309 resultados para 12C


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Australian southern continental margin is the world’s largest site of cool-water carbonate deposition, and the Great Australian Bight is its largest sector. The Eyre Peninsula is fringed by coastal beaches with aeolianites and marks the eastern edge of the Great Australian Bight. Five shoreline transects of varying lengths spanned a 150km longitudinal distance and at each the intertidal, beach, dune and secondary dune environments were sampled, for a total of 18 samples. Sediments are a mixture of modern, relict, and Cenozoic carbonates, and quartz grains. Carbonate aeolianites on the western Eyre Peninsula are mostly composed of modern carbonate grains: predominantly molluscs (23-33%) and benthic foraminifera (10-26%), locally abundant coralline algae (3-28%), echinoids (2-22%), and bryozoans (2-14%). Cenozoic grain abundance ranges from 1-6% whereas relict grain abundance ranges from 0-17%. A southward increase in bryozoan particles correlates with a nutrient element abundance and decrease in temperature due to a large seasonal coastal upwelling system that drives 2-3 major upwelling events per year, bringing cold, nutrient rich, Sub-Antarctic Surface Water (<12°C) onto the shelf. In southern, mostly wind protected locations, the beach and dune sediment compositions are similar, indicating that wind energy has successfully carried all sediment components of the beach into the adjacent dunes. In northern, exposed locations, the composition is not the same everywhere, and trends indicate that relative wind energy has the ability to impact grain composition through preferential wind transport. Aeolianite composition is therefore a function of both upwelling and the degree of coastal exposure.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable isotopic and minor element compositions were measured on the fine fraction of pelagic carbonate sediments from Ocean Drilling Program Site 709 in the central Indian Ocean. This section ranges in age from 47 Ma to the present. The observed compositional variations are the result of either paleoceanographic changes (past oceanic chemical or temperature variations) or diagenetic changes. The CaCO3 record is little affected by diagenesis. From previous work, carbonate content is known to be determined by the interplay of biological productivity, water column dissolution, and dilution. The carbon isotopic record is generally similar to previously published curves. A good correlation was observed between sea-level high stands and high 13C/12C ratios. This supports Shackleton's hypothesis that as the proportion of organic carbon buried in marine sediments becomes larger, oceanic-dissolved inorganic carbon becomes isotopically heavier. This proportion appears to be higher when sea level is higher and organic carbon is buried in more extensive shallow-shelf sediments. The strontium content and oxygen isotopic composition of carbonate sediments are much more affected by burial diagenesis. Low strontium concentrations are invariably associated with high values of d18O, probably indicating zones of greater carbonate recrystallization. Nevertheless, there is an inverse correlation between strontium concentration and sea level that is thought to be a result of high-strontium aragonitic sedimentation on shallow banks and shelves during high stands. Iron and manganese concentrations and, to a lesser extent, magnesium and strontium concentrations and carbon isotopic ratios are affected by early diagenetic reactions. These reactions are best observed in a slumped interval of sediments that occurs between 13.0 and 17.5 Ma. As a result of microbial reduction of manganese and iron oxides and dissolved sulfate, it is hypothesized that small amounts of mixed-metal carbonate cements are precipitated. These have low carbon isotopic ratios and high concentrations of metals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The principal gaseous carbon-containing components identified in the first 400 m of sediment at Deep Sea Drilling Project Site 533, Leg 76, are methane (CH4) and carbon dioxide (CO2). Below a sub-bottom depth of about 25 m, sediment cores commonly contained pockets caused by the expansion of gas upon core recovery. The carbon isotopic composition (d13C per mil relative to PDB standard) of CH4 and CO2 in these gas pockets has been measured, resulting in the following observations: (1) d13C-CH4 values increase with depth from approximately -94 per mil in the uppermost sediment to about -66 per mil in the deepest sediment, reflecting a systematic but nonlinear depletion of 12C with depth. (2) d13C-CO2 values also increase with depth of sediment from about -25 per mil to about -4 per mil, snowing a depletion of 12C that closely parallels the trend of the isotopic composition of CH4. The magnitude and parallel distribution of d13C values for both CH4 and CO2 are consistent with the concept that the formation of the CH4 resulted from the microbiological reduction of CO2 from organic substances. These results imply that CH4 and CO2 incorporated in gas hydrates at this site are biogenic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secondary carbonate minerals were recovered within the basalts at both ODP Sites 768 and 770 in the Sulu and Celebes seas. Petrographic and X-ray diffraction analyses indicate that the carbonates are calcites. Other alteration products recognized in the thin sections are smectites, iron oxides, and gypsum. The 13C values of carbonates from both sites range from 1.6 per mil to 2.3 per mil, which are indicative of inorganic carbonate formation with no contributions from 13C-depleted sources such as oxidized organic carbon or methane. The oxygen isotopes at Site 770 range from 30.8 per mil to 31.6 per mil, which indicates a pervasive circulation of cold seawater (9° to 12°C) during alteration of the Celebes Sea basalts. In contrast, carbonates associated with Site 768 basalts have less positive d18O values (21.0 per mil to 27.3 per mil). A lighter 18O isotopic signature indicates the formation of secondary calcite at either higher temperatures or in a system closed to seawater. The rapidly deposited pyroclastic flows at Site 768 would have limited water access to the crust very soon after its formation, which leads us to speculate that the carbonates in the Sulu Sea basalts were formed by isotopically modified fluids resulting from basalt alteration in a closed system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed records of the carbon and oxygen isotopic ratios of Neogloboquadrina pachyderma are compared between nine high-latitude sediment cores, from the Northern and Southern Hemispheres, covering the last 140000 yrs. The strong analogies between the delta13C records permit to define a delta13C stratigraphic scale, with three clear cut transitions simultaneous with the oxygen isotopic transitions 6/5 (125 kyrs.), 5/4 (65 kyrs.), and 2/1 (13 kyrs.). The delta13C records of N. pachyderma in the high-latitude cores, which follow the changes in delta13C of the surface water TCO2 near areas of deep water formation present trends similar to the benthic foraminifera delta13C records in cores V19-30 and M12-392, although amplitudes of the isotopic shifts are different. This implies that a large part of the observed variations represents global changes in the carbon distribution between biosphere and ocean. The 13C/12C ratios of N. pachyderma in the North Atlantic cores display larger regional variations at 18 kyrs. B.P. than at present. To explain these differences, we have plotted the 18 kyrs. B.P. delta13C values of N. pachyderma from 17 cores distributed N of 40°N. Comparison with published surface water temperature distribution at 18 kyrs. B.P. indicates that a strong divergent cyclonic cell, centered approximatively 55°N and 15°W, was active during most of the last ice-age maximum. This hydrology, analogous to the present Weddell Sea, explains the published evidences of bottom water formation, if located on the northern flank of the gyre, and the strong polar front on the southern flank, probable location of intermediate water formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oceanographic changes in the western equatorial Pacific during the past 6 m.y. are inferred from carbon isotopic analyses of planktonic and benthic foraminifers from Ontong Java Plateau (DSDP Site 586). Sample spacing is 1.5 m (ca. 35,000-75,000 yr). An overall trend of d13C toward lighter values is evident for the last 5 m.y. in all four foraminiferal taxa analyzed (G. sacculifer, Pulleniatina, P. wuellerstorfi, and O. umbonatus). This trend is interpreted as an enrichment of the global ocean with 12C, because of the addition of carbon from organic carbon reservoirs (or lack of removal of carbon to such reservoirs), as a consequence of an overall drop in sea level. Differences between shallow- and deep-water d13C decrease slightly during this time interval, suggesting a moderate drop in productivity. This drop is not sufficient to explain the drop in sedimentation rate, however, much of which apparently must be ascribed to winnowing effects. A marked convergence in the d13C values of planktonic taxa exists within the last 2 m.y. We propose that this convergence indicates nutrient depletion in thermocline waters, caused by the vigorous removal of phosphate in marginal upwelling regions, or by the stripping of intermediate waters in their source regions. No large shifts are seen in the carbon isotope record of the last 6 m.y., in contrast to the oxygen isotope record. Some indication of cyclicity is present, with a period between 0.5 and 1.0 m.y. (especially in the earlier portion of the record).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable isotope analyses and scanning electron micrographs have been carried out on six planktonic forminifera species, Pulleniatina obliquiloculata, Globorotalia tumida, Sphaeroidinella dehiscens, Globigerinoides ruber, Globigerinoides sacculifer and Globigerinoides quadrilobatus from eleven box-cores taken at increasing depths in the equatorial Ontong-Java Plateau (Pacific). This allows us to describe the way dissolution affects the microstructures of the tests of the different species and to quantify the changes of isotopic composition. We may conclude that: 1) dissolution effects on test morphology and stable isotope compositions are species dependent, species with a similar habitat showing a similar trend; 2) the shallow water, thin-shelled species are the first to disappear: scanning electron microscope (SEM) work shows alteration of outer layers. Deep water, thick-shelled species are present in all samples: SEM work shows breakdown and disparition of inner layers; 3) for all species there is a similar trend towards increasing delta18O values with increasing water depths and increasing dissolution. This effect may be as high as 0.6 ? per thousand meters for Globorotalia tumida; 4) below the lysocline, around 3500 m, it appears that 13C/12C ratios slightly increase towards equilibrium values for thick shelled species: G. tumida, P. obliquiloculata and S. dehiscens. 14C dates and isotope stratigraphy of two box-cores show that all samples are recent in age, and exclude upward mixing of glacial deposits as an important factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ivory, Spanish, 12C; 1 ft. 2 3/8 in.x 6 19/64 in.x 1 3/8 in.; carved whalebone

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metalwork, French, 12C; 1 ft. 2 11/64 in.x 4 27/32 in.x 4 39/64 in.; copper: formed, repoussé, engraved, chased, scraped, and gilt; hands cast; champlevé enamel on wood core

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metalwork, French, 12C; 1 ft. 2 11/64 in.x 4 27/32 in.x 4 39/64 in.; copper: formed, repoussé, engraved, chased, scraped, and gilt; hands cast; champlevé enamel, glass carbochons on wood core