397 resultados para 1241
Resumo:
Long-term surveys of the coast bordering the western Baltic Sea in Schleswig-Holstein yielded extensive information over the retreat and condition of active cliffs. 181 cliffs with a total length of 148 km are present along the 55 km coastline including Fehmarn lsland and the Schlei Fjord. Depending on their temporal and spatial evolution, and geomorphological stability, the cliffs are subdivided in three separate classes - actively retreating escarpments, cliff Segments with potential for retreat and stable cliffs. 85 sections of the coastline with a total length of 59 km are classified as ,,active cliffs" that are undergoing retreat through natural erosion, collapse, and disintegration.
Resumo:
Depending on the temperature and the extent of diagenetic alteration of fluid chemistry, fluid flow at convergent margins may transfer important quantities of heat and mass between the crust and seawater, thereby influencing global mass, isotopic and heat budgets. In the North Aoba Basin, an intra-arc basin located at the New Hebrides Island Arc, alteration of volcanic ash to clay minerals and zeolites forms a CaCl2 brine, perhaps in less than 1 to 3 m.y. The brine results from an exchange of Ca for Na, K, and Mg, and an increase in Cl concentrations to a maximum of 1241 mM. The Cl increase is partly due to the transfer of H2O from the pore fluid into authigenic minerals, but water mass balances, d18O-Cl correlations, and Br/Cl ratios suggest that there is a source of Cl in the sediments. Concentration profiles indicate that Li is transferred from the fluid to solid phase at depths <300 meters below seafloor (mbsf), but at greater depths it is transferred from the solid to fluid phase, at temperatures possibly as low as 25°C. In the accretionary wedge extensive fluid flow appears to be confined to highly faulted regions. Although Cl concentrations less than seawater value are common at convergent margins, the New Hebrides margin contains little low-Cl fluid. Br/Cl ratios suggest the low-Cl fluid is from dilution, and d18O values indicate the water may be derived from mineral dehydration and mixing with meteoric water. The New Hebrides margin exhibits few surface manifestations of venting (e.g., sulfide-oxidizing benthic biological communities, carbonate crusts, mud volcanoes) and thus fluid fluxes may be smaller than at many other margins.