751 resultados para 1104
Resumo:
Maerl is a type of rhodolith, found in ecologically important beds of high conservation value; a major conservation objective is to establish growth rates. Maerl shows internal banding of controversial periodicity that may contain a high-resolution record of palaeoceanographic-palaeoclimatic data. To investigate growth rates and banding periodicity, we used the vital stain Alizarin Red in combination with scanning electron microscopy (SEM). Three maerl species, Phymatolithon calcareum, Lithothamnion corallioides and L. glaciale, were collected from maerl beds in Ireland. Following staining, maerl was grown in three controlled temperature treatments and at two depths in the field (P. calcareum only), with Corallina officinalis as a control for the stain. Alizarin Red was shown to be a suitable marker for growth in European maerl species and for C. officinalis. The average tip growth rate of P. calcareum from Northern Ireland at 10 m depth and under constant laboratory conditions was c. 0.9 mm yr(-1), double the rates observed at 5 m depth and in L. corallioides. Our measurements and re-examination of reported data allow us to conclude that the three most abundant maerl species in Europe grow about 1 (0.5-1.5) mm per tip per year under a wide range of field and artificial conditions. Internal banding in temperate European maerl revealed by SEM is a result of regular changes in wall thickness; the approximately monthly periodicity of bands in field-grown specimens is consistent with previous suggestions that they may be lunar. The potential for maerl banding to be a high-resolution record of palaeoclimatic and palaeoenvironmental change could be realized with this vital stain in conjunction with isotopic or microgeochemical analyses.
Resumo:
Two species of Osmundea Stackhouse (Rhodomelaceae, Rhodophyta) that occur in Atlantic Europe have been confused under the names Osmundea ramosissima (Oeder) Athanasiadis and Osmundea truncata (Kutzing) Nam et Maggs, regarded until now as a synonym of O. ramosissima, An epitype from its type locality (Stavanger, Norway) is selected for Osmundea ramosissima Athanasiadis, recognized here as a valid name for Fucus ramosissimus Oeder, nom. illeg. Details of vegetative and reproductive morphology of O. ramosissima are reported, based on material from France, the British Isles, and Helgoland. Osmundea ramosissima resembles other species of Osmundea in its vegetative axial segments with two pericentral cells and one trichoblast, spermatangial development from apical and epidermal cells (filament type), the formation of five pericentral cells in the procarp-bearing segment of the female trichoblast, and tetrasporangial production from random epidermal cells. Among the species of Osmundea, O. ramosissima is most similar to O. truncata. Both species have discoid holdfasts, secondary pit connections between epidermal cells, and cup-shaped spermatangial pits. They differ in that: (a) O. ramosissima lacks lenticular wail thickenings and refractive needle-like inclusions in medullary cells, both of which are present in O. truncata; (b) O. ramosissima has branched spermatangial filaments that terminate in a cluster of several cells, whereas in O. truncata the unbranched spermatangial filaments have a single large terminal sterile cell; and (c) cystocarps of O. ramosissima lack protuberant ostioles but ostioles are remarkably protuberant in o. truncata. Phylogenetic analyses of rbcL sequences of Laurencia obtusa (Hudson) Lamouroux and all five Atlantic European species of Osmundea, including the type species, strongly support the generic status of Osmundea. Osmundea ramosissima and O. truncata are closely related (5.2% sequence divergence) and form a well-supported clade sister to a clade consisting of O. pinnatifida (Hudson) Stack-house, O. osmunda Stackhouse and O. hybrida (A. P. de Candolle) Nam. The formation of secondary pit connections between epidermal cells is a synapomorphy for the O. ramosissima + O. truncata clade. The close relationship between species with cup-shaped spermatangial pits (Osmundea hybrida) and urn-shaped pits (Osmundea pinnatifida and Osmundea osmunda) shows that spermatangial pit shape is not an important phylogenetic character. Parsimony analysis of a morphological data set also supports the genus Osmundea but conflicts with the molecular trees in infrageneric relationships, placing O. hybrida basal within the Osmundea clade and grouping O. osmunda and O. pinnatifida but not O. truncata and O. ramosissima. A key to Osmundea species is presented.
Resumo:
The genus Polysiphonia Greville, nom. cons., has had a long and confused nomenclatural history. At present, Polysiphonia has a wide circumscription, including at least 200 species, but it is heterogeneous in many vegetative and reproductive developmental features. Central to any re-evaluation of the genus is a detailed examination of the type species of Polysiphonia, P. urceolata (Lightfoot ex Dillwyn) Greville, which is conspecific with P. stricta (Dillwyn) Greville. We here report on the vegetative and reproductive morphology of P. stricta, including P, urceolata, based on type and other material from the British Isles. Thalli consist of prostrate and erect ecorticate axes with four pericentral cells, attached by unicellular rhizoids remaining in open connection with pericentral cells. Prostrate axes lack vegetative trichoblasts; trichoblasts occur seasonally on erect axes. Branch initials are cut off from the subapical cell at intervals of four or five segments in dichotomous and alternating pairs rather than being formed horn each axial cell in the spiral pattern typical of most species of Polysiphonia. Spermatangial branch initials, which are trichoblast homologues, are produced directly from each axial cell at the tips of erect branches, not subtended by trichoblasts, and have two- to five-celled sterile tips when mature. The mature carpogonial branch is four-celled with a two-celled first sterile group and a one-celled second sterile group. Following presumed fertilization, direct fusion apparently takes place between carpogonium and auxiliary tell; mature cystocarps are usually urceolate. Tetrasporangia are formed from the third pericentral cell, in straight series, and have two pre-sporangial cover cells. Previous accounts of a third, post-sporangial cover cell could not be substantiated. P. stricta and a small group of other Polysiphonia species differ in several important respects from most members of the genus, which have rhizoids cut off from pericentral cells by a cell division, abundant trichoblasts, spirally arranged tetrasporangia and a post-sporangial cover cell. The branching pattern of P. stricta highlights the difficulties of distinguishing between the tribes Polysiphonieae and Pterosiphonieae.
Resumo:
Four of the five members of the Dasyaceae found in the British Isles, Dasya corymbifera J. Agardh, Dasya hutchinsiae Harvey, Dasya punicea Meneghini ex Zanardini and Heterosiphonia plumosa (Ellis) Batters, appear to have Polysiphonia-type life histories on the basis of evidence from field collections of tetrasporophytes and gametophytes. In collections from the British Isles of the fifth species, Dasya ocellata (Grateloup) Harvey, only tetrasporophytes have ever been observed, but there are two reports of gametophytes in this species from further south in Europe. Dasya ocellata tetraspores were isolated into culture from populations in Strangford Lough, Northern Ireland, and Agadir, Morocco, where one female thallus was collected amongst tetrasporophytes. Dasya ocellata from Ireland underwent a direct tetraspore-to-tetrasporophyte life history, which was followed through two complete cycles. Karyological studies showed that meiosis does not occur during tetrasporangial development: tetrasporangia are mitotic, with c. 64 small chromosomes. Comparison with chromosome numbers in meiotic tetrasporangia of D. hutchinsiae (n = c. 32) showed that this is the diploid chromosome complement. Tetraspores from the Moroccan isolate, by contrast, gave rise to gametophytes (although only the males became fertile) and tetrasporophyte recycling did not occur. Thalli sampled from a population in southern Portugal consisted only of tetrasporophytes. Dasya ocellata, like many members of the Ceramiales, shows intraspecific life history variability; a sexual life history apparently occurs only in southern populations.
Resumo:
Marine ecosystems and their associated populations are increasingly at risk from the cumulative impacts of many anthropogenic threats that increase the likelihood of species extinction and altered community dynamics. In response, marine reserves can be used to protect exploited species and conserve biodiversity. The increased abundance of predatory species in marine reserves may cause indirect effects along chains of multi-trophic interactions. These trophic cascades can arise through direct predation, density-mediated indirect interactions (DMIIs), or indirect behavioural effects, termed trait-mediated indirect interactions (TMIIs). The extent of algal cover and the abundance of 4 primary consumers were determined in Lough Hyne, which was designated Europe's first marine nature reserve in 1981. The primary consumers were the sea urchin Paracentrotus lividus, the topshell Gibbula cineraria, the oyster Anomia ephippium, and the scallop Chlamys varia. The abundances of 3 starfish species (Marthasterias glacialis, Asterias rubens, and Asterina gibbosa) were also determined, as were 2 potential crustacean predators, Necora puber and Carcinus maenas. These data were compared with historical data from a 1962 (prey) and a 1963 (predator) survey to determine the nature of community interactions over adjacent trophic levels. The present study reveals a breakdown in population structure of the 4 surveyed prey species. Marine reserve designation has led to an increase in predatory crabs and M. glacialis, a subsequent decrease in primary consumers, especially the herbivore P. lividus, and an increase in macroalgal cover which is indicative of a trophic cascade. The study shows that establishing a Marine Reserve does not guarantee that conservation benefits will be distributed equally.
Resumo:
The relationship between biodiversity and ecological processes is currently the focus of considerable research effort, made all the more urgent by the rate of biodiversity loss world-wide. Rigorous experimental approaches to this question have been dominated by terrestrial ecologists, but shallow-water marine systems offer great opportunities by virtue of their relative ease of manipulation, fast response times and well-understood effects of macrofauna on sediment processes. In this paper, we describe a series of experiments whereby species richness has been manipulated in a controlled way and the concentrations of nutrients (ammonium, nitrate and phosphate) in the overlying water measured under these different treatments. The results indicate variable effects of species and location on ecosystem processes, and are discussed in the context of emerging mainstream ecological theory on biodiversity and ecosystem relations. Extensions of the application of the experimental approach to species-rich, large-scale benthic systems are discussed and the potential for novel analyses of existing data sets is highlighted. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Fishing alters community size structure by selectively removing larger individual fish and by changing the relative abundance of different-sized species. To assess the relative importance of individual-and species-level effects, two indices of fish community structure were compared, the relative abundance of large fish individuals (large fish indicator, LFI) and the relative abundance of large fish species (large species indicator, LSI). The two indices were strongly correlated for empirical data from the Celtic Sea and for data from simulated model communities, suggesting that much of the variability in the LFI is caused by shifts in the relative abundance of species (LSI). This correlation is explained by the observation that most of the biomass of a given species is spread over few length classes, a range spanning the factor 2 of individual length, such that most species contributed predominantly to either the small or the large component of the LFI. The results suggest that the effects of size-selective fishing in the Celtic Sea are mediated mainly through changes in community composition.
Resumo:
We detail the calculations of North Sea Large Fish Indicator values for 2009-2011, demonstrating an apparent stall in recovery. Therefore, recovery to the Marine Strategy Framework Directive's good environmental status of 0.3 by the 2020 deadline now looks less certain and may take longer than was expected using data from 2006 to 2008.
Resumo:
The influence of predation in structuring ecological communities can be informed by examining the shape and magnitude of the functional response of predators towards prey. We derived functional responses of the ubiquitous intertidal amphipod Echinogammarus marinus towards one of its preferred prey species, the isopod Jaera nordmanni. First, we examined the form of the functional response where prey were replaced following consumption, as compared to the usual experimental design where prey density in each replicate is allowed to deplete. E. marinus exhibited Type II functional responses, i.e. inversely density-dependent predation of J. nordmanni that increased linearly with prey availability at low densities, but decreased with further prey supply. In both prey replacement and non-replacement experiments, handling times and maximum feeding rates were similar. The non-replacement design underestimated attack rates compared to when prey were replaced. We then compared the use of Holling’s disc equation (assuming constant prey density) with the more appropriate Rogers’ random predator equation (accounting for prey depletion) using the prey non-replacement data. Rogers’ equation returned significantly greater attack rates but lower maximum feeding rates, indicating that model choice has significant implications for parameter estimates. We then manipulated habitat complexity and found significantly reduced predation by the amphipod in complex as opposed to simple habitat structure. Further, the functional response changed from a Type II in simple habitats to a sigmoidal, density-dependent Type III response in complex habitats, which may impart stability on the predator−prey interaction. Enhanced habitat complexity returned significantly lower attack rates, higher handling times and lower maximum feeding rates. These findings illustrate the sensitivity of the functional response to variations in prey supply, model selection and habitat complexity and, further, that E. marinus could potentially determine the local exclusion and persistence of prey through habitat-mediated changes in its predatory functional responses.
Resumo:
A key for three putative species apparently found in three geographic areas, i.e. Coregonus clupeoides (in Scotland), Coregonus stigmaticus (in England), and Coregonus pennantii (in Wales) given in a recent review was tested quantitatively using 544 individuals from nine populations. The classification success of the key was very low (27%). It was concluded that there is currently no robust evidence for the recognition of the three putative species. Furthermore, the use of phenotypic characters alone to distinguish putative species in postglacial fish species such as those of the genus Coregonus that show homoplasy in many of these traits is questioned. In the absence of further evidence, it was concluded that a single highly variable species best describes the pattern of phenotypic variation in these U.K. populations. On this basis it is argued that taxonomic subdivision of U.K. European coregonids is inappropriate and that Coregonus lavaretus should prevail as the species name applicable to all populations.
Resumo:
Evidence is provided from stable isotope analysis that aggregations of small ocean sunfish Mola mola (total length <1 m) feed broadly within coastal food webs and their classification as obligate predators of gelatinous zooplankton requires revision.
Resumo:
1. Recent proliferation of hybridisation in response to anthropogenic ecosystem change, coupled with increasing evidence of the importance of ancient hybridisation events in the formation of many species, has moved hybridisation to the forefront of evolutionary theory.
2. In spite of this, the mechanisms (e. g. differences in trophic ecology) by which hybrids co-exist with parental taxa are poorly understood. A unique hybrid zone exists in Irish freshwater systems, whereby hybrid offspring off two non-native cyprinid fishes often outnumber both parental species.
3. Using stable isotope and gut content analyses, we determined the trophic interactions between sympatric populations of roach (Rutilus rutilus), bream (Abramis brama) and their hybrid in lacustrine habitats.
4. The diet of all three groups displayed little variation across the study systems, and dietary overlap was observed between both parental species and hybrids. Hybrids displayed diet, niche breadth and trophic position that were intermediate between the two parental species while also exhibiting greater flexibility in diet across systems.
Resumo:
Differences in stable-isotope values, morphology and ecology in whitefish Coregonus lavaretus were investigated between the three basins of Loch Lomond. The results are discussed with reference to a genetic investigation to elucidate any substructuring or spawning site fidelity. Foraging fidelity between basins of Loch Lomond was indicated by delta 13C and delta 15N values of C. lavaretus muscle tissue. There was, however, no evidence of the existence of sympatric morphs in the C. lavaretus population. A previous report of two C. lavaretus 'species' in Loch Lomond probably reflects natural variation between individuals within a single mixed population.