981 resultados para µ-Opioid receptor agonist


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Central α2-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α2-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α2-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α2-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α2-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α2-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The activation of a2-adrenoceptors with bilateral injections of moxonidine (a2-adrenoceptor and imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) increases 1.8% NaCl intake induced by treatment with furosemide (FURO) + captopril (CAP) subcutaneously. In the present study, we analyzed licking microstructure during water and 1.8% NaCl intake to investigate the changes in orosensory and postingestive signals produced by moxonidine injected into the LPBN. Male Sprague–Dawley rats were treated with FURO + CAP combined with bilateral injections of vehicle or moxonidine (0.5 nmol/0.2 ll) into the LPBN. Bilateral injections of moxonidine into the LPBN increased FURO + CAP-induced 1.8% NaCl intake, without changing water intake. Microstructural analysis of licking behavior found that this increase in NaCl intake was a function of increased number of licking bursts from 15 to 75 min of the test (maximum of 49 ± 9 bursts/bin, vs. vehicle: 2 ± 2 bursts/bin). Analysis of the first 15 min of the test, when most of the licking behavior occurred, found no effect of moxonidine on the number of licks/burst for sodium intake (24 ± 5 licks/burst, vs. vehicle: 27 ± 8 licks/burst). This finding suggests that activation of a2-adrenoceptors in the LPBN affects postingestive signals that are important to inhibit and limit sodium intake by FURO + CAP-treated rats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exenatide extended-release (ER) is a microencapsulated formulation of the glucagon-like peptide 1-receptor agonist exenatide: It has a protracted pharmacokinetic profile that allows a once-weekly injection with comparable efficacy to insulin with an improved safety profile in type II diabetic people. Here, we studied the pharmacology of exenatide ER in 6 healthy cats. A single subcutaneous injection of exenatide ER (0.13 mg/kg) was administered on day 0. Exenatide concentrations were measured for 12 wk. A hyperglycemic clamp (target = 225 mg/dL) was performed on days 7 (clamp I) and 21 (clamp II) with measurements of insulin and glucagon concentrations. Glucose tolerance was defined as the amount of glucose required to maintain hyperglycemia during the clamp. Continuous glucose monitoring was performed on weeks 0, 2, and 6 after injection. Plasma concentrations of exenatide peaked at 1 h and 4 wk after injection. Comparing clamp I with clamp II, fasting blood glucose decreased (mean standard deviation = 11 8 mg/dL, P = 0.02), glucose tolerance improved (median [range] +33% 14%-138%], P = 0.04), insulin concentrations increased (+36.5% [-9.9% to 274.1%], P = 0.02), and glucagon concentrations decreased (-4.7% [0%-12.1%], P = 0.005). Compared with preinjection values on continuous glucose monitoring, glucose concentrations decreased and the frequency of readings <50 mg/dL increased at 2 and 6 wk after injection of exenatide ER. This did not correspond to clinical hypoglycemia. No other side effects were observed throughout the study. Exenatide ER was safe and effective in improving glucose tolerance 3 wk after a single injection. Further evaluation is needed to determine its safety, efficacy, and duration of action in diabetic cats. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Central α2-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α2-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α2-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α2-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α2-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α2-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several findings have pointed to the role of the dorsal periaqueductal gray (dPAG) serotonin 5-HT1A and 5-HT2(A-C) receptor subtypes in the modulation of defensive behavior in animals exposed to the elevated plus-maze (EPM). Besides displaying anxiety-like behavior, rodents also exhibit antinociception in the EPM. This study investigated the effects of intra-dPAG injections of 5-HT1A and 5-HT2B/2C receptor ligands on EPM-induced antinociception in mice. Male Swiss mice received 0.1 mu l intra-dPAG injections of vehicle, 5.6 and 10 nmol of 8-OHDPAT, a 5-HT1A receptor agonist (Experiment 1), or 0.01, 0.03 and 0.1 nmol of mCPP, a 5-HT2B/2C receptor agonist (Experiment 2). Five minutes later, each mouse received an intraperitoneal injection of 0.6% acetic acid (0.1 ml/10 g body weight; nociceptive stimulus) and was individually confined in the open (OA) or enclosed (EA) arms of the EPM for 5 min, during which the number of abdominal writhes induced by the acetic acid was recorded. While intra-dPAG injection of 8-OHDPAT did not change open-arm antinociception (OAR). mCPP (0.01 nmol) enhanced it. Combined injections of ketanserin (10 nmol/0.1 mu l), a 5-HT2A/2C receptor antagonist, and 0.01 nmol of mCPP (Experiment 3), selectively and completely blocked the OAR enhancement induced by mCPP. Although intra-dPAG injection of mCPP (0.01 nmol) also produced antinociception in EA-confined mice (Experiment 2), this effect was not confirmed in Experiment 3. Moreover, no other compound changed the nociceptive response in EA-confined animals. These results suggest that the 5-HT2C receptors located within the PAG play a role in this type of environmentally induced pain inhibition in mice. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deactivation of the inhibitory mechanisms with injections of moxonidine (alpha(2)-adrenoceptor/imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) increases hypertonic NaCl intake by intra- or extracellular dehydrated rats. In the present study, we investigated the changes in the urinary sodium and volume, sodium balance, and plasma vasopressin and oxytocin in rats treated with intragastric (i.g.) 2 M NaCl load (2 ml/rat) combined with injections of moxonidine into the LPBN. Male Holtzman rats (n=5-12/group) with stainless steel cannulas implanted bilaterally into LPBN were used. Bilateral injections of moxonidine (0.5 nmol/0.2 mu l) into the LPBN decreased i.g. 2 M NaCIinduced diuresis (4.6 +/- 0.7 vs. vehicle: 7.4 +/- 0.6 ml/120 min) and natriuresis (1.65 +/- 0.29 vs. vehicle: 2.53 +/- 0.17 mEq/120 min), whereas the previous injection of the alpha(2)-adrenoceptor antagonist RX 821002 (10 nmol/0.2 mu l) into the LPBN abolished the effects of moxonidline. Moxonidine injected into the LPBN reduced i.g. 2 M NaCl-induced increase in plasma oxytocin and vasopressin (14.6 +/- 2.8 and 2.2 +/- 0.3 vs. vehicle: 25.7 +/- 7 and 4.3 +/- 0.7 pg/ml, respectively). Moxonidine injected into the LPBN combined with i.g. 2 M NaCl also increased 0.3 M NaCl intake (7.5 +/- 1.7 vs. vehicle: 0.5 +/- 0.2 mEq/2 h) and produced positive sodium balance (2.3 +/- 1.4 vs. vehicle: -1.2 +/- 0.4 mEq/2 h) in rats that had access to water and NaCl. The present results show that LPBN alpha(2)-adrenoceptor activation reduces renal and hormonal responses to intracellular dehydration and increases sodium and water intake, which facilitates sodium retention and body fluid volume expansion. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relationships between PRL and PGF(2 alpha) and their effect on luteolysis were studied. Heifers were treated with a dopamine-receptor agonist (bromocriptine; Bc) and a Cox-1 and -2 inhibitor (flunixin meglumine [FM]) to inhibit PRL and PGF(2 alpha), respectively. The Bc was given (Hour 0) when ongoing luteolysis was indicated by a 12.5% reduction in CL area (cm(2)) from the area on Day 14 postovulation, and FM was given at Hours 0, 4, and 8. Blood samples were collected every 8-h beginning on Day 14 until Hour 48 and hourly for Hours 0 to 12. Three groups of heifers in ongoing luteolysis were used: control (n = 7), Bc (n = 7), and FM (n = 4). Treatment with Bc decreased (P < 0.003) the PRL concentrations averaged over Hours 1 to 12. During the greatest decrease in PRL (Hours 2-6), LH concentrations were increased. Progesterone concentrations averaged over hours were greater (P < 0.05) in the Bc group than in the controls. In the FM group, no PGFM pulses were detected, and PRL concentrations were reduced. Concentrations of PGFM were not reduced in the Bc group, despite the reduction in PRL. Results supported the hypothesis that a decrease (12.5%) in CL area (cm(2)) is more efficient in targeting ongoing luteolysis (63%) than using any day from Days 14 to >= 19 (efficiency/day, 10-24%). The hypothesis that PRL has a role in luteolysis was supported but was confounded by the known positive effect of LH on progesterone. The hypothesis was supported that the synchrony of PGFM and PRL pulses represents a positive effect of PGF(2 alpha), on PRL, rather than an effect of PRL on PGF(2 alpha). (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report changes in plasma arginine vasopressin (AVP) and oxytocin (OT) concentrations evoked by the microinjection of L-glutamate (L-glu) into the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus(PVN) of unanesthetized rats, as well as which local mechanisms are involved in their mediation. L-Glu microinjection (10 nmol/100 nl) into the SON increased the circulating levels of both AVP and OT. The AVP increases were blocked by local pretreatment with the selective non-N-methyl-D-aspartate (NMDA) receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) (2 nmol/100 nl), but it was not affected by pretreatment with the NMDA-receptor antagonist LY235959 (2 nmol/100 nl). The OT response to L-glu microinjection into the SON was blocked by local pretreatment with either NBQX or LY235959. Furthermore, the administration of either the non-NMDA receptor agonist (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrobromide (AMPA) (5 nmol/100 nl) or NMDA receptor agonist NMDA (5 nmol/100 nl) into the SON had no effect on OT baseline plasma levels, but when both agonists were microinjected together these levels were increased. L-Glu microinjection into the PVN did not change circulating levels of either AVP or OT. However, after local pretreatment with LY235959, the L-glu microinjection increased plasma levels of the hormones. The L-glu microinjection into the PVN after the local treatment with NBQX did not affect the circulating AVP and OT levels. Therefore, results suggest the AVP release from the SON is mediated by activation of non-NMDA glutamate receptors, whereas the OT release from this nucleus is mediated by an interaction of NMDA and non-NMDA receptors. The present study also suggests an inhibitory role for NMDA receptors in the PVN on the release of AVP and OT. (Endocrinology 153: 2323-2331, 2012)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cannabinoid receptor 1 (CB1) agonists usually induce dose-dependent biphasic effects on anxiety-related responses. Low doses induce anxiolytic-like effects, whereas high doses are ineffective or anxiogenic, probably due to activation of Transient Receptor Potential Vanilloid Type 1 (TRPV1) channels. In this study we have investigated this hypothesis by verifying the effects of the CB1/TRPV1 agonist ACEA injected into the prelimbic medial prefrontal cortex (PL) and the participation of endocannabinoids in the anxiolytic-like responses induced by TRPV1 antagonism, using the elevated plus-maze (EPM) and the Vogel conflict test (VCT). Moreover, we verified the expression of these receptors in the PL by double labeling immunofluorescence. ACEA induced anxiolytic-like effect in the intermediate dose, which was attenuated by previous injection of AM251, a CB1 receptor antagonist. The higher and ineffective ACEA dose caused anxiogenic- and anxiolytic-like effects, when injected after AM251 or the TRPV1 antagonist 6-iodonordihydrocapsaicin (6-I-CPS), respectively. Higher dose of 6-I-CPS induced anxiolytic-like effects both in the EPM and the VCT, which were prevented by previous administration of AM251. In addition, immunofluorescence showed that CB1 and TRPV1 receptors are closely located in the PL These results indicate that the endocannabinoid and endovanilloid systems interact in the PL to control anxiety-like behavior. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydroquinone (HQ) is the main oxidative substance in cigarette smoke and a toxic product of benzene biotransformation. Although the respiratory tract is an inlet pathway of HQ exposure, its effect on airway muscle responsiveness has not been assessed. We thus investigated the effects of low dose in vivo HQ-exposure on tracheal responsiveness to a muscarinic receptor agonist. Male Swiss mice were exposed to aerosolised 5% ethanol/saline solution (HQ vehicle; control) or 0.04 ppm HQ (1 h/day for 5 days) and tracheal rings were collected 1 h after the last exposure. HQ exposure caused tracheal hyper-responsiveness to methacholine (MCh), which was abolished by mechanical removal of the epithelium. This hyperresponsiveness was not dependent on neutrophil infiltration, but on tumour necrosis factor (TNF) secretion by epithelial cells. This conclusion was based on the following data: (1) trachea from HQ-exposed mice presented a higher amount of TNF, which was abrogated following removal of the epithelium; (2) the trachea hyperresponsiveness and TNF levels were attenuated by in vivo chlorpromazine (CPZ) treatment, an inhibitor of TNF synthesis. The involvement of HQ-induced TNF secretion in trachea mast cell degranulation was also demonstrated by the partial reversion of tracheal hyperresponsiveness in sodium cromoglicate-treated animals, and the in vivo HQ-exposure-induced degranulation of trachea connective tissue and mucosal mast cells, which was reversed by CPZ treatment. Our data show that in vivo HQ exposure indirectly exacerbates the parasympathetic-induced contraction of airway smooth muscle cells, mediated by TNF secreted by tracheal epithelial cells, clearly showing the link between environmental HQ exposure and the reactivity of airways. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Catecholaminergic C1 cells of the rostral ventrolateral medulla (RVLM) are key determinants of the sympathoexcitatory response to peripheral chemoreceptor activation. Overactivation of this reflex is thought to contribute to increased sympathetic activity and hypertension; however, molecular mechanisms linking peripheral chemoreceptor drive to hypertension remain poorly understood. We have recently determined that activation of P2Y1 receptors in the RVLM mimicked effects of peripheral chemoreceptor activation. Therefore, we hypothesize that P2Y1 receptors regulate peripheral chemoreceptor drive in this region. Here, we determine whether P2Y1 receptors are expressed by C1 neurons in the RVLM and contribute to peripheral chemoreceptor control of breathing, sympathetic activity, and blood pressure. We found that injection of a specific P2Y1 receptor agonist (MRS2365) into the RVLM of anesthetized adult rats increased phrenic nerve activity (≈55%), sympathetic nerve activity (38±6%), and blood pressure (23±1 mm Hg), whereas application of a specific P2Y1 receptor antagonist (MRS2179) decreased peripheral chemoreceptor–mediated activation of phrenic nerve activity, sympathetic nerve activity, and blood pressure. To establish that P2Y1 receptors are expressed by C1 cells, we determine in the brain slice preparation using cell-attached recording techniques that cells responsive to MRS2365 are immunoreactive for tyrosine hydroxylase (a marker of C1 cells), and we determine in vivo that C1-lesioned animals do not respond to RVLM injection of MRS2365. These data identify P2Y1 receptors as key determinants of peripheral chemoreceptor regulation of breathing, sympathetic nerve activity, and blood pressure.