947 resultados para  adsorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of natural and heat-treated Macauba palm cake as adsorbent for the removal of Methylene Blue (MB) and Congo Red (CR) from solution has been investigated. Equilibrium adsorption was attained in <7 h and the process was favored at pH 5.0 for MB and pH 6.5 for CR with an adsorbent (g):adsorbate (mL) ratio of 1:200 and an initial concentration of adsorbate of 25 mg L−1. The maximum adsorption capacities of the natural and heat-treated materials were, respectively, 25.80 and 32.30 mg g−1 for MB, and 32.00 and 20.30 mg g−1 for CR. The isotherm model proposed by Sips represented most adequately the adsorption of MB and CR. The adsorptions of the dyes were best described in terms of a pseudo second-order reaction. Thermodynamic parameters such as ΔHo, ΔSo and ΔGo were calculated. The adsorption process was found to be endothermic and spontaneous. Macauba palm cake is adequate for the removal of waste dye from industrial effluents by virtue of its abundance, low cost and efficiency of adsorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporary B deficiency can be triggered by liming of acid soils because of increased B adsorption at higher soil pH. Plants respond directly to the activity of B in soil solution and only indirectly to B adsorbed on soil constituents. Because the range between deficient and toxic B concentration is relatively narrow, this poses difficulty in maintaining appropriate B levels in soil solution. Thus, knowledge of the chemical behavior of B in the soil is particularly important. The present study investigated the effect of soil pH on B adsorption in four soils of Parana State, and to correlate these values with the physical and chemical properties of the soils. Surface samples were taken from a Rhodic Hapludox, Arenic Hapludalf, Arenic Hapludult, and one Typic Usthorthent. To evaluate the effect of pH on B adsorption, subsamples soil received the application of increasing rates of calcium carbonate. Boron adsorption was accomplished by shaking 2.0 g soil, for 24 h, with 20 mL of 0.01 mol L-1 NaCl solution containing different concentrations (0.0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0, and 4.0 mg B L-1). Sorption was fitted to non-linear form of the Langmuir adsorption isotherm. Boron adsorption increased as concentration increased. Boron adsorption was dependent on soil pH, increasing as a function of pH in the range between 4.6 and 7.4, although the bonding energy has decreased. Maximum adsorption capacity (MAC) of B was observed in the Arenic Hapludalf (49.8 mg B kg(-1) soil) followed by Arenic Hapludult (22.5 mg kg(-1)), Rhodic Hapludox (17.4 mg kg(-1)), and Typic Usthorthent (7.0 mg kg(-1)). The organic matter content, clay content, and aluminum oxide content (Al2O3) were the soils properties that affecting the B adsorption on Parana soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on extensive Monte Carlo simulations and analytical considerations we study the electrostatically driven adsorption of flexible polyelectrolyte chains onto charged Janus nanospheres. These net-neutral colloids are composed of two equally but oppositely charged hemispheres. The critical binding conditions for polyelectrolyte chains are analysed as function of the radius of the Janus particle and its surface charge density, as well as the salt concentration in the ambient solution. Specifically for the adsorption of finite-length polyelectrolyte chains onto Janus nanoparticles, we demonstrate that the critical adsorption conditions drastically differ when the size of the Janus particle or the screening length of the electrolyte are varied. We compare the scaling laws obtained for the adsorption-desorption threshold to the known results for uniformly charged spherical particles, observing significant disparities. We also contrast the changes to the polyelectrolyte chain conformations close to the surface of the Janus nanoparticles as compared to those for simple spherical particles. Finally, we discuss experimentally relevant physicochemical systems for which our simulations results may become important. In particular, we observe similar trends with polyelectrolyte complexation with oppositely but heterogeneously charged proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The zero-valent iron (ZVI) mediated degradation of the antibiotic ciprofloxacin (CIP) was studied under oxic condition. Operational parameters such as ZVI concentration and initial pH value were evaluated. Increase of the ZVI concentration from 1 to 5 g L−1 resulted in a sharp increase of the observed pseudo-first order rate constant of CIP degradation, reaching a plateau at around 10 g L−1. The contribution of adsorption to the overall removal of CIP and dissolved organic carbon (DOC) was evaluated after a procedure of acidification to pH 2.5 with sulfuric acid and sonication for 2 min. Adsorption increased as pH increased, while degradation decreased, showing that adsorption is not important for degradation. Contribution of adsorption was much more important for DOC removal than for CIP. Degradation of CIP resulted in partial defluorination since the fluoride measured corresponded to 34% of the theoretical value after 120 min of reaction. Analysis by liquid chromatography coupled to mass spectrometry showed the presence of products of hydroxylation on both piperazine and quinolonic rings generating fluorinated and defluorinated compounds as well as a product of the piperazine ring cleavage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What are the fundamental laws for the adsorption of charged polymers onto oppositely charged surfaces, for convex, planar, and concave geometries? This question is at the heart of surface coating applications, various complex formation phenomena, as well as in the context of cellular and viral biophysics. It has been a long-standing challenge in theoretical polymer physics; for realistic systems the quantitative understanding is however often achievable only by computer simulations. In this study, we present the findings of such extensive Monte-Carlo in silico experiments for polymer-surface adsorption in confined domains. We study the inverted critical adsorption of finite-length polyelectrolytes in three fundamental geometries: planar slit, cylindrical pore, and spherical cavity. The scaling relations extracted from simulations for the critical surface charge density sigma(c)-defining the adsorption-desorption transition-are in excellent agreement with our analytical calculations based on the ground-state analysis of the Edwards equation. In particular, we confirm the magnitude and scaling of sigma(c) for the concave interfaces versus the Debye screening length 1/kappa and the extent of confinement a for these three interfaces for small kappa a values. For large kappa a the critical adsorption condition approaches the known planar limit. The transition between the two regimes takes place when the radius of surface curvature or half of the slit thickness a is of the order of 1/kappa. We also rationalize how sigma(c)(kappa) dependence gets modified for semi-flexible versus flexible chains under external confinement. We examine the implications of the chain length for critical adsorption-the effect often hard to tackle theoretically-putting an emphasis on polymers inside attractive spherical cavities. The applications of our findings to some biological systems are discussed, for instance the adsorption of nucleic acids onto the inner surfaces of cylindrical and spherical viral capsids.