989 resultados para wheat defence genes
Resumo:
Oral squamous cell carcinoma (OSCC) may arise from potentially malignant oral lesions. All-trans retinoic acid (atRA), which plays a role in cell growth and differentiation, has been studied as a possible chemotherapeutic agent in the prevention of this progression. While the mechanism by which atRA suppresses cell growth has not been completely elucidated, it is known that homeobox genes are atRA targets. To determine if these genes are involved in the atRA-mediated OSCC growth inhibition, PCR array was performed to evaluate the expression of 84 homeobox genes in atRA-sensitive SCC-25 cells compared to atRA-resistant SCC-9 cells following 7 days with atRA treatment. Results showed that the expression of 8 homeobox genes was downregulated and expression of 4 was upregulated in SCC-25 cells but not in SCC-9 cells. Gene expression levels were confirmed for seven of these genes by RT-qPCR. Expression of three genes that showed threefold downregulation was evaluated in SCC-25 cells treated with atRA for 3, 5, and 7 days. Three different patterns of atRA-dependent gene expression were observed. ALX1 showed downregulation only on day 7. DLX3 showed reduced expression on day 3 and further reduced on clay 7. TLX1 showed downregulation only on days 5 and 7. Clearly the expression of homeobox genes is modulated by atRA in OSCC cell lines. However, the time course of this modulation suggests that these genes are not direct targets of atRA mediating OSCC growth suppression. Instead they appear to act as downstream effectors of atRA signaling. J. Cell. Biochem. 111: 1437-1444, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Oral squamous cell carcinoma (OSCC) accounts for more than 90% of the malignant neoplasms that arise in the mucosa of the upper aerodigestive tract. Recent studies of cleft lip/palate have shown the association of genes involved in cancer. WNT pathway genes have been associated with several types of cancer and recently with cleft lip/palate. To investigate if genes associated with cleft lip/palate were also associated with oral cancer, we genotyped 188 individuals with OSCC and 225 control individuals for markers in AXIN2, AXIN1, GSK3 beta, WNT3A, WNT5A, WNT8A, WNT11, WNT3, and WNT9B. Statistical analysis was performed with PLINK 1.06 software to test for differences in allele frequencies of each polymorphism between cases and controls. We found association of SNPs in GSK3B (p = 0.0008) and WNT11 (p = 0.03) with OSCC. We also found overtransmission of GSK3B haplotypes in OSCC cases. Expression analyses showed up-regulation of WNT3A, GSK3B, and AXIN1 and down-regulation of WNT11 in OSCC in comparison with control tissues (P < 0.001). Additional studies should focus on the identification of potentially functional variants in these genes as contributors to human clefting and oral cancer.
Resumo:
We tested the hypothesis that X-linked genes determining stature which are subject to skewed or non-random X-inactivation can account for discordance in height in monozygotic female twins. Height discordant female monozygotic adult twins (20 pairs) were identified from the Australian Twin Registry, employing the selection criteria of proven monozygosity and a measured height discordance of at least 5 cm. Differential X-inactivation was examined in genomic DNA extracted from peripheral lymphocytes by estimating differential methylation of alleles at the polymorphic CAG triplet repeat of the Androgen receptor gene (XAR). There were 17/20 MZ pairs heterozygous at this locus and informative for analysis. Of these, 10/17 both had random X-inactivation, 5/17 showed identical X-inactivation patterns of non random inactivation and 2/17 (12%) showed discordant X-inactivation. There was no relationship between inactivation patterns and self-report chorionicity. We conclude that non-random X-inactivation does not appear to be a major contributor to intra-pair height discordance in female MZ twins.
Resumo:
The University of Queensland's School of Political Science and International Studies organised a round table in Canberra on 27 June 2001 that brought together a select group of government policy-makers and academic specialists to discuss the issue of ballistic missile defence (BMD). The round table provided useful insights into Australian thinking on the issue. This report seeks to summarise the essence of those discussions in order to contribute to the broader national debate.(1)
Resumo:
Now that some of the genes involved in asthma and allergy have been identified, interest is turning to how genetic predisposition interacts with exposure to environmental risk factors. These questions are best answered by studies in which both genotypes and other risk factors are measured, but even simpler studies, in which family history is used as a proxy for genotype, have made suggestive findings. For example, early breast feeding may increase the risk of allergic disease in genetically susceptible children, and decrease the risk of 'sporadic' allergy. This review also addresses the overall importance of genetic causes of allergic disease in the general population.
Resumo:
The synthesis of the visible pigment melanin by the melanocyte cell is the basis of the human pigmentary system, those genes directing the formation, transport and distribution of the specialised melanosome organelle in which melanin accumulates can legitimately be called pigmentation genes. The genes involved in this process have been identified through comparative genomic studies of mouse coat colour mutations and by the molecular characterisation of human hypopigmentary genetic diseases such as OCA1 and OCA2. The melanocyte responds to the peptide hormones a-MSH or ACTH through the MC1R G-protein coupled receptor to stimulate melanin production through induced maturation or switching of melanin type. The pheomelanosome, containing the key enzyme of the pathway tyrosinase, produces light red/yellowish melanin, whereas the eumelanosome produces darker melanins via induction of additional TYRP1, TYRP2, SILV enzymes, and the P-protein. Intramelanosomal pH governed by the P-protein may act as a critical determinant of tyrosinase enzyme activity to control the initial step in melanin synthesis or TYRP complex formation to facilitate melanogenesis and melanosomal maturation. The search for genetic variation in these candidate human pigmentation genes in various human populations has revealed high levels of polymorphism in the MC1R locus, with over 30 variant alleles so far identified. Functional correlation of MC1R alleles with skin and hair colour provides evidence that this receptor molecule is a principle component underlying normal human pigment variation. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Haemochromatosis associated with mutations in the HFE gene is the most common inherited disorder in Caucasian populations. Early diagnosis and treatment allows for normal life expectancy whereas there is considerable morbidity and early mortality in those patients diagnosed late or untreated. Unfortunately, the development of symptoms and signs in haemochromatosis is usually associated with significant iron overload. For this reason, many clinicians and geneticists have advocated population screening. The recent identification of the HFE gene and the availability of a simple DNA-based diagnostic test have led to international debate as to the most cost-effective means of population screening for HFE-associated haemochromatosis. The present paper summarizes the evidence in favour of population screening and analyses the relative advantages of genotypic (DNA test) versus phenotypic (transferrin saturation) testing.
Resumo:
The K5 Plan for the defence of the Cambodian-Thai border was the response of the People's Republic of Kampuchea and its Vietnamese mentors to the threat posed by the resistance forces, particularly the Khmer Rouge, to its efforts to rebuild the nation and consolidate its administration. The very real defence gains, however, were made at the cost of bitter popular resentment over the way those gains were made.