975 resultados para visuomotor rotation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for determining the temporal evolution of plasma rotation is reported in this work. The method is based upon the detection of two different portions of the spectral profile of a plasma impurity line, using a monochromator with two photomultipliers installed at the exit slits. The plasma rotation velocity is determined by the ratio of the two detected signals. The measured toroidal rotation velocities of C III (4647.4 angstrom) and C VI (5290.6 angstrom), at different radial positions in TCABR discharges, show good agreement, within experimental uncertainty, with previous results (Severo et al 2003 Nucl. Fusion 43 1047). In particular, they confirm that the plasma core rotates in the direction opposite to the plasma current, while near the plasma edge (r/a > 0.9) the rotation is in the same direction. This technique was also used to investigate the dependence of toroidal rotation on the poloidal position of gas puffing. The results show that there is no dependence for the plasma core, while for plasma edge (r/a > 0.9) some dependence is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a large-scale systematics of charge densities, excitation energies and deformation parameters For hundreds of heavy nuclei The systematics is based on a generalized rotation vibration model for the quadrupole and octupole modes and takes into account second-order contributions of the deformations as well as the effects of finite diffuseness values for the nuclear densities. We compare our results with the predictions of classical surface vibrations in the hydrodynamical approximation. (C) 2010 Elsevier B V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider an integrable Hamiltonian system generated by the resonant normal form in order to study a particular mechanism of tunneling. We isolated near doublets of energy corresponding to rotation tori of the classical dynamics counterpart and the degeneracies breakdown is attributed to rotation-rotation tunneling. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report 6 K-Ar ages and paleomagnetic data from 28 sites collected in Jurassic, Lower Cretaceous and Paleocene rocks of the Santa Marta massif, to test previous hypothesis of rotations and translations of this massif, whose rock assemblage differs from other basement-cored ranges adjacent to the Guyana margin. Three magnetic components were identified in this study. A first component has a direction parallel to the present magnetic field and was uncovered in all units (D 352, I = 25.6, k = 57.35, a95 = 5.3, N = 12). A second component was isolated in Cretaceous limestone and Jurassic volcaniclastic rocks (D = 8.8, I = 8.3, k = 24.71, a95 = 13.7, N = 6), and it was interpreted as of Early Cretaceous age. In Jurassic sites with this component, Early Cretaceous K-Ar ages obtained from this and previous studies are interpreted as reset ages. The third component was uncovered in eight sites of Jurassic volcaniclastic rocks, and its direction indicates negative shallow to moderate inclinations and northeastward declinations. K-Ar ages in these sites are of Early (196.5 +/- 4.9 Ma) to early Late Jurassic age (156.6 +/- 8.9 Ma). Due to local structural complexity and too few Cretaceous outcrops to perform a reliable unconformity test, we only used two sites with (1) K-Ar ages, (2) less structural complexity, and (3) reliable structural data for Jurassic and Cretaceous rocks. The mean direction of the Jurassic component is (D = 20.4, I = -18.2, k = 46.9, a95 = 5.1, n = 18 specimens from two sites). These paleomagnetic data support previous models of northward along-margin translations of Grenvillian-cored massifs. Additionally, clockwise vertical-axis rotation of this massif, with respect to the stable craton, is also documented; the sense of rotation is similar to that proposed for the Perija Range and other ranges of the southern Caribbean margin. More data is needed to confirm the magnitudes of rotations and translations. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the temporal dynamics and changes in connectivity in the mental rotation network through the application of spatio-temporal support vector machines (SVMs). The spatio-temporal SVM [Mourao-Miranda, J., Friston, K. J., et al. (2007). Dynamic discrimination analysis: A spatial-temporal SVM. Neuroimage, 36, 88-99] is a pattern recognition approach that is suitable for investigating dynamic changes in the brain network during a complex mental task. It does not require a model describing each component of the task and the precise shape of the BOLD impulse response. By defining a time window including a cognitive event, one can use spatio-temporal fMRI observations from two cognitive states to train the SVM. During the training, the SVM finds the discriminating pattern between the two states and produces a discriminating weight vector encompassing both voxels and time (i.e., spatio-temporal maps). We showed that by applying spatio-temporal SVM to an event-related mental rotation experiment, it is possible to discriminate between different degrees of angular disparity (0 degrees vs. 20 degrees, 0 degrees vs. 60 degrees, and 0 degrees vs. 100 degrees), and the discrimination accuracy is correlated with the difference in angular disparity between the conditions. For the comparison with highest accuracy (08 vs. 1008), we evaluated how the most discriminating areas (visual regions, parietal regions, supplementary, and premotor areas) change their behavior over time. The frontal premotor regions became highly discriminating earlier than the superior parietal cortex. There seems to be a parcellation of the parietal regions with an earlier discrimination of the inferior parietal lobe in the mental rotation in relation to the superior parietal. The SVM also identified a network of regions that had a decrease in BOLD responses during the 100 degrees condition in relation to the 0 degrees condition (posterior cingulate, frontal, and superior temporal gyrus). This network was also highly discriminating between the two conditions. In addition, we investigated changes in functional connectivity between the most discriminating areas identified by the spatio-temporal SVM. We observed an increase in functional connectivity between almost all areas activated during the 100 degrees condition (bilateral inferior and superior parietal lobe, bilateral premotor area, and SMA) but not between the areas that showed a decrease in BOLD response during the 100 degrees condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compression test with rotating dies was employed to estimate the friction factor between aluminum samples and steel tooling during large plastic deformations. A cylindrical workpiece was compressed under dry and cold conditions. The magnitudes of torque and normal force were measured and
the average friction factor was calculated using the Coulomb friction law. It was found that under certain conditions the friction increased with increasing angular velocity of the die. This finding led to the conclusion that the choice of die rotation speed is important in interpreting the results from the twist compression test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies show that children with developmental coordination disorder (DCD) have difficulties in generating an accurate visuospatial representation of an intended action, which are shown by deficits in motor imagery. This study sought to test this hypothesis further using a mental rotation paradigm. It was predicted that children with DCD would not conform to the typical pattern of responding when required to imagine movement of their limbs. Participants included 16 children with DCD and 18 control children; mean age for the DCD group was 10 years 4 months, and for controls 10 years. The task required children to judge the handedness of single-hand images that were presented at angles between 0° and 180° at 45° intervals in either direction. Results were broadly consistent with the hypothesis above. Responses of the control children conformed to the typical pattern of mental rotation: a moderate trade-off between response time and angle of rotation. The response pattern for the DCD group was less typical, with a small trade-off function. Response accuracy did not differ between groups. It was suggested that children with DCD, unlike controls, do not automatically enlist motor imagery when performing mental rotation, but rely on an alternative object-based strategy that preserves speed and accuracy. This occurs because these children manifest a reduced ability to make imagined transformations from an egocentric or first-person perspective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of experiments are reported for compression of an aluminum cylinder with monotonic and cyclic die rotation. When the die is monotonically rotated, a higher angular velocity or a lower compression speed of the tool leads to a greater load reduction in comparison of that seen with a stationary die. The test results also show that cyclic die rotation causes a cyclic fluctuation in the load-displacement curve. During the die deceleration phase, the compression load increases until it reaches the level obtained in conventional compression with stationary dies. However, the compression load is observed to reduce to levels lower than those obtained in monotonic rotating compression tests during the die acceleration phase. The frequency of rotating direction change seems to affect the position of load peaks only, not the amplitude of the peaks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical compression garments have been shown to improve functional control in patients with motor impairments, however, investigation in functional control has not been observed whilst wearing sports compression garments. This pilot study assessed motor control changes in the bicep brachii muscle following a bout of eccentric exercise designed to induce delayed onset muscle soreness for intervals up to 14 days after exercise. Eight male participants performed 35 maximal isokinetic eccentric extensions at 90° s−1. Participants where then randomly divided into one of two groups to perform a one-dimensional elbow flexion/extension visuomotor tracking task; one group wore a sports compression garment during the task, the other acted as control (no garment). The group who wore the compression garment performed the tracking task significantly better immediately post-exercise, and at days 1, 2 and 3 post-exercise (p ≤ 0.05). Non-significant but large and moderate effects sizes (ES), in tracking, were found between the two groups on day 5 (ES = 1.3) and day 7 (ES = 0.7), respectively. Further research is necessary to elucidate these preliminary findings, however, the results suggest that the wearing of sports compression garments post-eccentric exercise has a positive effect on functional motor control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective
This study examines the influence of posture on the range of axial rotation of the thorax and the range and direction of the coupled lateral flexion.

Methods

The ranges of mid thoracic axial rotation and coupled lateral flexion were measured in 52 asymptomatic subjects (aged 18-43 years) using an optical motion analysis system. To examine the influence of posture on primary and coupled motion, we initiated axial rotation from a neutral sitting posture and from end-range thoracic flexion and extension.

Results
There was a significant decrease in the range of thoracic rotation in flexion compared with the neutral and extended postures (P < .001). The mean range of coupled lateral flexion was 8.9% of the axial rotation range in the neutral posture and increased to 14.3% and 23.2% in the extended and flexed postures, respectively. Patterns of coupled motion varied between subjects, but an ipsilateral pattern was more common in the flexed posture, whereas a contralateral pattern was more common in the neutral and extended postures.

Conclusions

The ranges and patterns of coupled motion of the thorax appear to be strongly influenced by the posture from which the movement is initiated. This has important implications in relation to the interpretation of clinical tests of thoracic motion and in consideration of mechanisms of development of thoracic pain disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human central nervous system (CNS) has the ability to modulate its activity during the performance of different movements. Recent evidence, however, suggests that the CNS can also modulate its activity in the same movement but with increased precision during a visuomotor static task. This study aimed to extend on these findings by using transcranial magnetic stimulation (TMS) to measure the CNS during the performance of two visuomotor dynamic tasks. Twelve volunteers participated in this study, performing two separate motor tasks. Study I (“Position Tracking”) involved participants to perform a visuomotor tracking task using a dial potentiometer and matching their response icon to the computer generated tracking icon whilst holding a pincer grip. Study II (“Force Tracking”) involved participants to perform a similar visuomotor tracking task by applying or releasing pressure against a fixed force transducer. Tasks were conducted at two speeds (“slow” being one tracking cycle in 10 s; and “fast” being two tracking cycles in 10 s) and compared to a visuomotor static task at a similar muscle contraction level. Results showed corticospinal changes with significant increases (p = 0.002) in excitability demonstrated during Study I (42.3 ± 16.8%) and Study II (56.3 ± 34.2%) slow speed tasks. Moreover, significant reduction in corticospinal inhibition was also observed during both tracking tasks at slow (59.3 ± 13.7%; p = 0.001) and fast speeds (31.9 ± 12.3%; p = 0.001). The findings may provide information on the underlying physiology during the early stages of motor skill acquisition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parallel manipulators with a rotation-symmetric arm system possess all the typical advantages of parallel robots, such as high acceleration and high-accuracy positioning. Contrary to the majority of proposed parallel manipulators, the rotation-symmetric arm system leads to a large workspace in relation to the footprint of the manipulator. This paper focuses on a subclass of these manipulators with additional favorable qualities, including low inertia and high eigenfrequencies. These qualities are achieved using only 5-DOF lower arm links and by mounting all actuators on the nonmoving base column of the manipulator. The common feature of all previously proposed manipulators in this subclass is identified and several novel 3-DOF and 4-DOF members are introduced.