982 resultados para vertebre, anterior, wedge, fracture, FEM, LVDT, estensimetri
Resumo:
Syntactic foams made by mechanical mixing of polymeric binder and hollow spherical particles are used as core materials in sandwich structured materials. Low density of such materials makes them suitable for weight sensitive applications. The present study correlates various postcompression microscopic observations in syntactic foams to the localized events leading the material to fracture. Depending upon local stress conditions the fracture features of syntactic foam are identified for various modes of fracture such as compressive, shear and tensile. Microscopic observations were also taken at sandwich structures containing syntactic foam as core materials and also at reinforced syntactic foam containing glass fibers. These observations provide conclusive evidences for the fracture features generated under different failure modes. All the microscopic observations were taken using scanning electron microscope in secondary electron mode. (C) 2002 Kluwer Academic Publishers.
Resumo:
An experimental investigation on the fracture properties of high-strength concrete (HSC) is reported. Three-point bend beam specimens of size 100 x 100 x 500 mm were used as per RILEM-FMC 50 recommendations. The influence of maximum size of coarse aggregate on fracture energy, fracture toughness, and characteristic length of concrete has been studied. The compressive strength of concrete ranged between 40 and 75 MPa. Relatively brittle fracture behavior was observed with the increase in compressive strength. The load-CMOD relationship is linear in the ascending portion and gradually drops off after the peak value in the descending portion. The length of the tail end portion of the softening curve increases as the size of coarse aggregate increases. The fracture energy increases as the maximum size of coarse aggregate and compressive strength of concrete increase. The characteristic length of concrete increases with the maximum size of coarse aggregate and decreases as the compressive strength increases, (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The evaluation of the creep deformation and fracture behavior of a 2.25Cr-1Mo steel base metal, a 2.25Cr-1Mo/2.25Cr-1Mo similar weld joint, and a 2.25Cr-1Mo/Alloy 800 dissimilar weld joint at 823 K over a stress range of 90 to WO MPa has been carried out. The specimens for creep testing were taken from single-V weld pads fabricated by a shielded metal arc-welding process using 2.25Cr-1Mo steel (for similar-joint) and INCONEL 182 (for dissimilar-joint) electrodes. The weld pads were subsequently given a postweld hear treatment (PWHT) of 973 K for I hour. The microstructure and microhardness of the weld joints were evaluated in the as-welded, postweld heat-treated, and creep-tested conditions. The heat-affected zone (HAZ) of similar weld joint consisted of bainite in the coarse-prior-austenitic-grain (CPAG) region near the fusion line, followed by bainite in the fine-prior-austenitic-grain (FPAG) and intercritical regions merging with the unaffected base metal. In addition to the HAZ structures in the 2.25Cr-1Mo steel, the dissimilar weld joint displayed a definite INCONEL/2.25Cr-1Mo weld interface structure present either as a sharp line or as a diffuse region. A hardness trough was observed in the intercritical region of the HAZ in both weld joints, while a maxima in hardness was seen at the weld interface of the dissimilar weld joint. Both weld joints exhibited significantly lower rupture lives compared to the 2.25Cr-1Mo base metal. The dissimilar weld joint exhibited poor rupture life compared to the similar weld joint, at applied stresses lower than 130 MPa. In both weld joints, the strain distribution across the specimen gage length during creep testing varied significantly. During creep testing, localization of deformation occurred in the intercritical HAZ. In the similar weld joint, at all stress levels investigated, and in the dissimilar weld joint, at stresses greater than or equal to 150 MPa, the creep failure occulted in the intercritical HAZ. The fracture occurred by transgranular mode with a large number of dimples. At stresses below 150 MPa, the failure in the dissimilar weld joint occurred in the CPAG HAZ near to the weld interface. The failure occurred by extensive intergranular creep cavity formation.
Resumo:
The evaluation of the creep deformation and fracture behavior of a 2.25Cr-1Mo steel base metal, a 2.25Cr-1Mo/2.25Cr-1Mo similar weld joint, and a 2.25Cr-1Mo/Alloy 800 dissimilar weld joint at 823 K over a stress range of 90 to WO MPa has been carried out. The specimens for creep testing were taken from single-V weld pads fabricated by a shielded metal arc-welding process using 2.25Cr-1Mo steel (for similar-joint) and INCONEL 182 (for dissimilar-joint) electrodes. The weld pads were subsequently given a postweld hear treatment (PWHT) of 973 K for I hour. The microstructure and microhardness of the weld joints were evaluated in the as-welded, postweld heat-treated, and creep-tested conditions. The heat-affected zone (HAZ) of similar weld joint consisted of bainite in the coarse-prior-austenitic-grain (CPAG) region near the fusion line, followed by bainite in the fine-prior-austenitic-grain (FPAG) and intercritical regions merging with the unaffected base metal. In addition to the HAZ structures in the 2.25Cr-1Mo steel, the dissimilar weld joint displayed a definite INCONEL/2.25Cr-1Mo weld interface structure present either as a sharp line or as a diffuse region. A hardness trough was observed in the intercritical region of the HAZ in both weld joints, while a maxima in hardness was seen at the weld interface of the dissimilar weld joint. Both weld joints exhibited significantly lower rupture lives compared to the 2.25Cr-1Mo base metal. The dissimilar weld joint exhibited poor rupture life compared to the similar weld joint, at applied stresses lower than 130 MPa. In both weld joints, the strain distribution across the specimen gage length during creep testing varied significantly. During creep testing, localization of deformation occurred in the intercritical HAZ. In the similar weld joint, at all stress levels investigated, and in the dissimilar weld joint, at stresses greater than or equal to 150 MPa, the creep failure occulted in the intercritical HAZ. The fracture occurred by transgranular mode with a large number of dimples. At stresses below 150 MPa, the failure in the dissimilar weld joint occurred in the CPAG HAZ near to the weld interface. The failure occurred by extensive intergranular creep cavity formation.
Resumo:
Epoxy systems containing HTBN rubber material and reinforced with E-glass fibres, exposed to a fixed time duration in three separate media were subjected to compressive mode of deformation. The yield stress and fractographic features noted on the compression failed samples are reported in this work. The experiment reveals that the seawater exposed sample exhibits a drop in strength compared to dry (unexposed) sample. This kind of drop is maintained if the media is changed from seawater to distilled water. When HCl is included in seawater. the experiment shows a small rise in strength value. These changes have been attributed to various factors like medium ingress into samples assisting interface failure, the larger-sized Cl- influencing the extent of diffusion of medium into system and finally their participation in the deformation phenomena. The fractographic features reveal interface separations that show either scattered debris or a cleaner surface or display a whitish-coated matrix region depending on whether the tests are done on unexposed samples or on ones following the immersion in the media.
Resumo:
The role of matrix microstructure on the fracture of Al-alloy composites with 60 vol% alumina particulates was studied. The matrix composition and microstructure were systematically varied by changing the infiltration temperature and heat treatment. Characterization was carried out by a combination of metallography, hardness measurements, and fracture studies conducted on compact tension specimens to study the fracture toughness and crack growth in the composites. The composites showed a rise in crack resistance with crack extension (R curves) due to bridges of intact matrix ligaments formed in the crack wake. The steady-state or plateau toughness reached upon stable crack growth was observed to be more sensitive to the process temperature rather than to the heat treatment. Fracture in the composites was predominantly by particle fracture, extensive deformation, and void nucleation in the matrix. Void nucleation occurred in the matrix in the as-solutionized and peak-aged conditions and preferentially near the interface in the underaged and overaged conditions. Micromechanical models based on crack bridging by intact ductile ligaments were modified by a plastic constraint factor from estimates of the plastic zone formed under indentations, and are shown to be adequate in predicting the steady-state toughness of the composite.
Resumo:
Fracture toughness and fracture mechanisms in Al2O3/Al composites are described. The unique flexibility offered by pressureless infiltration of molten Al alloys into porous alumina preforms was utilized to investigate the effect of microstructural scale and matrix properties on the fracture toughness and the shape of the crack resistance curves (R-curves). The results indicate that the observed increment in toughness is due to crack bridging by intact matrix ligaments behind the crack tip. The deformation behavior of the matrix, which is shown to be dependent on the microstructural constraints, is the key parameter that influences both the steady-state toughness and the shape of the R-curves. Previously proposed models based on crack bridging by intact ductile particles in a ceramic matrix have been modified by the inclusion of an experimentally determined plastic constraint factor (P) that determines the deformation of the ductile phase and are shown to be adequate in predicting the toughness increment in the composites. Micromechanical models to predict the crack tip profile and the bridge lengths (L) correlate well with the observed behavior and indicate that the composites can be classified as (i) short-range toughened and (ii) long-range toughened on the basis of their microstructural characteristics.
Resumo:
A continuum model based on the critical-state theory of soil mechanics is used to generate stress, density, and velocity profiles, and to compute discharge rates for the flow of granular material in a mass flow bunker. The bin–hopper transition region is idealized as a shock across which all the variables change discontinuously. Comparison with the work of Michalowski (1987) shows that his experimentally determined rupture layer lies between his prediction and that of the present theory. However, it resembles the former more closely. The conventional condition involving a traction-free surface at the hopper exit is abandoned in favour of an exit shock below which the material falls vertically with zero frictional stress. The basic equations, which are not classifiable under any of the standard types, require excessive computational time. This problem is alleviated by the introduction of the Mohr–Coulomb approximation (MCA). The stress, density, and velocity profiles obtained by integration of the MCA converge to asymptotic fields on moving down the hopper. Expressions for these fields are derived by a perturbation method. Computational difficulties are encountered for bunkers with wall angles θw [gt-or-equal, slanted] 15° these are overcome by altering the initial conditions. Predicted discharge rates lie significantly below the measured values of Nguyen et al. (1980), ranging from 38% at θw = 15° to 59% at θw = 32°. The poor prediction appears to be largely due to the exit condition used here. Paradoxically, incompressible discharge rates lie closer to the measured values. An approximate semi-analytical expression for the discharge rate is obtained, which predicts values within 9% of the exact (numerical) ones in the compressible case, and 11% in the incompressible case. The approximate analysis also suggests that inclusion of density variation decreases the discharge rate. This is borne out by the exact (numerical) results – for the parameter values investigated, the compressible discharge rate is about 10% lower than the incompressible value. A preliminary comparison of the predicted density profiles with the measurements of Fickie et al. (1989) shows that the material within the hopper dilates more strongly than predicted. Surprisingly, just below the exit slot, there is good agreement between theory and experiment.
Resumo:
Multiple beam interference of light in a wedge is considered when the wedge is filled with an absorbing medium. The aim is to examine a method that may give values of both the real and the imaginary parts of the refractive index of the absorbing medium. We propose here a method to determine these quantities from simple techniques like fringe counting and interferometry, by using as the incident wave either a single Gaussian beam or two parallel Gaussian beams.