979 resultados para variational mean-field method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model has been developed for evaluating grain size distributions in primary crystallizations where the grain growth is diffusion controlled. The body of the model is grounded in a recently presented mean-field integration of the nucleation and growth kinetic equations, modified conveniently in order to take into account a radius-dependent growth rate, as occurs in diffusion-controlled growth. The classical diffusion theory is considered, and a modification of this is proposed to take into account interference of the diffusion profiles between neighbor grains. The potentiality of the mean-field model to give detailed information on the grain size distribution and transformed volume fraction for transformations driven by nucleation and either interface- or diffusion-controlled growth processes is demonstrated. The model is evaluated for the primary crystallization of an amorphous alloy, giving an excellent agreement with experimental data. Grain size distributions are computed, and their properties are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a short-range generalization of the p-spin interaction spin-glass model. The model is well suited to test the idea that an entropy collapse is at the bottom line of the dynamical singularity encountered in structural glasses. The model is studied in three dimensions through Monte Carlo simulations, which put in evidence fragile glass behavior with stretched exponential relaxation and super-Arrhenius behavior of the relaxation time. Our data are in favor of a Vogel-Fulcher behavior of the relaxation time, related to an entropy collapse at the Kauzmann temperature. We, however, encounter difficulties analogous to those found in experimental systems when extrapolating thermodynamical data at low temperatures. We study the spin-glass susceptibility, investigating the behavior of the correlation length in the system. We find that the increase of the relaxation time is accompanied by a very slow growth of the correlation length. We discuss the scaling properties of off-equilibrium dynamics in the glassy regime, finding qualitative agreement with the mean-field theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show how macroscopic manifestations of P (and T) symmetry breaking can arise in a simple system subject to Aharonov-Bohm interactions. Specifically, we study the conductivity of a gas of charged particles moving through a dilute array of flux tubes. The interaction of the electrons with the flux tubes is taken to be of a purely Aharonov-Bohm type. We find that the system exhibits a nonzero transverse conductivity, i.e., a spontaneous Hall effect. This is in contrast to the fact that the cross sections for both scattering and bremsstrahlung (soft-photon emission) of a single electron from a flux tube are invariant under reflections. We argue that the asymmetry in the conductivity coefficients arises from many-body effects. On the other hand, the transverse conductivity has the same dependence on universal constants that appears in the quantum Hall effect, a result that we relate to the validity of the mean-field approximation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mean-field theory of a spin glass with a specific form of nearest- and next-nearest-neighbor interactions is investigated. Depending on the sign of the interaction matrix chosen we find either the continuous replica symmetry breaking seen in the Sherrington-Kirkpartick model or a one-step solution similar to that found in structural glasses. Our results are confirmed by numerical simulations and the link between the type of spin-glass behavior and the density of eigenvalues of the interaction matrix is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a generalization of the density functional theory. The theory leads to single-particle equations of motion with a quasilocal mean-field operator, which contains a quasiparticle position-dependent effective mass and a spin-orbit potential. The energy density functional is constructed using the extended Thomas-Fermi approximation and the ground-state properties of doubly magic nuclei are considered within the framework of this approach. Calculations were performed using the finite-range Gogny D1S forces and the results are compared with the exact Hartree-Fock calculations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a framework for learning in hidden Markov models with distributed state representations. Within this framework, we derive a learning algorithm based on the Expectation--Maximization (EM) procedure for maximum likelihood estimation. Analogous to the standard Baum-Welch update rules, the M-step of our algorithm is exact and can be solved analytically. However, due to the combinatorial nature of the hidden state representation, the exact E-step is intractable. A simple and tractable mean field approximation is derived. Empirical results on a set of problems suggest that both the mean field approximation and Gibbs sampling are viable alternatives to the computationally expensive exact algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rovibration partition function of CH4 was calculated in the temperature range of 100-1000 K using well-converged energy levels that were calculated by vibrational-rotational configuration interaction using the Watson Hamiltonian for total angular momenta J=0-50 and the MULTIMODE computer program. The configuration state functions are products of ground-state occupied and virtual modals obtained using the vibrational self-consistent field method. The Gilbert and Jordan potential energy surface was used for the calculations. The resulting partition function was used to test the harmonic oscillator approximation and the separable-rotation approximation. The harmonic oscillator, rigid-rotator approximation is in error by a factor of 2.3 at 300 K, but we also propose a separable-rotation approximation that is accurate within 2% from 100 to 1000 K. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using self-consistent field theory (SCFT), we investigate the morphologies formed by a melt brush of AB diblock copolymers grafted to a flat substrate by their B ends. In addition to a laterally uniform morphology, SCFT predicts three ordered morphologies exhibiting different periodic patterns at the air surface: a hexagonal array of A-rich dots, an alternating sequence of A- and B-rich stripes, and a hexagonal pattern of B-rich dots. When the phase diagram of the tethered film is plotted as a function of A/B incompatibility, $\chi N$, and diblock composition, $f$, it resembles the bulk phase diagram with the periodic phases converging to a mean-field critical point at weak segregation. The periodic-phase region in the phase diagram shrinks with increasing grafting density and expands when the air surface acquires an affinity for the grafted B blocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase diagram for an AB diblock copolymer melt with polydisperse A blocks and monodisperse B blocks is evaluated using lattice-based Monte Carlo simulations. Experiments on this system have shown that the A-block polydispersity shifts the order-order transitions (OOTs) towards higher A-monomer content, while the order-disorder transition (ODT) moves towards higher temperatures when the A blocks form the minority domains and lower temperatures when the A blocks form the matrix. Although self-consistent field theory (SCFT) correctly accounts for the change in the OOTs, it incorrectly predicts the ODT to shift towards higher temperatures at all diblock copolymer compositions. In contrast, our simulations predict the correct shifts for both the OOTs and the ODT. This implies that polydispersity amplifies the fluctuation-induced correction to the mean-field ODT, which we attribute to a reduction in packing frustration. Consistent with this explanation, polydispersity is found to enhance the stability of the perforated-lamellar phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By modelling the average activity of large neuronal populations, continuum mean field models (MFMs) have become an increasingly important theoretical tool for understanding the emergent activity of cortical tissue. In order to be computationally tractable, long-range propagation of activity in MFMs is often approximated with partial differential equations (PDEs). However, PDE approximations in current use correspond to underlying axonal velocity distributions incompatible with experimental measurements. In order to rectify this deficiency, we here introduce novel propagation PDEs that give rise to smooth unimodal distributions of axonal conduction velocities. We also argue that velocities estimated from fibre diameters in slice and from latency measurements, respectively, relate quite differently to such distributions, a significant point for any phenomenological description. Our PDEs are then successfully fit to fibre diameter data from human corpus callosum and rat subcortical white matter. This allows for the first time to simulate long-range conduction in the mammalian brain with realistic, convenient PDEs. Furthermore, the obtained results suggest that the propagation of activity in rat and human differs significantly beyond mere scaling. The dynamical consequences of our new formulation are investigated in the context of a well known neural field model. On the basis of Turing instability analyses, we conclude that pattern formation is more easily initiated using our more realistic propagator. By increasing characteristic conduction velocities, a smooth transition can occur from self-sustaining bulk oscillations to travelling waves of various wavelengths, which may influence axonal growth during development. Our analytic results are also corroborated numerically using simulations on a large spatial grid. Thus we provide here a comprehensive analysis of empirically constrained activity propagation in the context of MFMs, which will allow more realistic studies of mammalian brain activity in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A great explanatory gap lies between the molecular pharmacology of psychoactive agents and the neurophysiological changes they induce, as recorded by neuroimaging modalities. Causally relating the cellular actions of psychoactive compounds to their influence on population activity is experimentally challenging. Recent developments in the dynamical modelling of neural tissue have attempted to span this explanatory gap between microscopic targets and their macroscopic neurophysiological effects via a range of biologically plausible dynamical models of cortical tissue. Such theoretical models allow exploration of neural dynamics, in particular their modification by drug action. The ability to theoretically bridge scales is due to a biologically plausible averaging of cortical tissue properties. In the resulting macroscopic neural field, individual neurons need not be explicitly represented (as in neural networks). The following paper aims to provide a non-technical introduction to the mean field population modelling of drug action and its recent successes in modelling anaesthesia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present evidence that large-scale spatial coherence of 40 Hz oscillations can emerge dynamically in a cortical mean field theory. The simulated synchronization time scale is about 150 ms, which compares well with experimental data on large-scale integration during cognitive tasks. The same model has previously provided consistent descriptions of the human EEG at rest, with tranquilizers, under anesthesia, and during anesthetic-induced epileptic seizures. The emergence of coherent gamma band activity is brought about by changing just one physiological parameter until cortex becomes marginally unstable for a small range of wavelengths. This suggests for future study a model of dynamic computation at the edge of cortical stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes to the electroencephalogram (EEG) observed during general anesthesia are modeled with a physiological mean field theory of electrocortical activity. To this end a parametrization of the postsynaptic impulse response is introduced which takes into account pharmacological effects of anesthetic agents on neuronal ligand-gated ionic channels. Parameter sets for this improved theory are then identified which respect known anatomical constraints and predict mean firing rates and power spectra typically encountered in human subjects. Through parallelized simulations of the eight nonlinear, two-dimensional partial differential equations on a grid representing an entire human cortex, it is demonstrated that linear approximations are sufficient for the prediction of a range of quantitative EEG variables. More than 70 000 plausible parameter sets are finally selected and subjected to a simulated induction with the stereotypical inhaled general anesthetic isoflurane. Thereby 86 parameter sets are identified that exhibit a strong “biphasic” rise in total power, a feature often observed in experiments. A sensitivity study suggests that this “biphasic” behavior is distinguishable even at low agent concentrations. Finally, our results are briefly compared with previous work by other groups and an outlook on future fits to experimental data is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(\alpha ,u)=0 for random input \alpha (\omega ) with almost sure realizations in a neighborhood of a nominal input parameter \alpha _0. Under some structural assumptions on the parameter dependence, we prove existence and uniqueness of a random solution, u(\omega ) = S(\alpha (\omega )). We derive a multilinear, tensorized operator equation for the deterministic computation of k-th order statistical moments of the random solution's fluctuations u(\omega ) - S(\alpha _0). We introduce and analyse sparse tensor Galerkin discretization schemes for the efficient, deterministic computation of the k-th statistical moment equation. We prove a shift theorem for the k-point correlation equation in anisotropic smoothness scales and deduce that sparse tensor Galerkin discretizations of this equation converge in accuracy vs. complexity which equals, up to logarithmic terms, that of the Galerkin discretization of a single instance of the mean field problem. We illustrate the abstract theory for nonstationary diffusion problems in random domains.