892 resultados para tunable photodetector
Resumo:
A new series of fine-tunable phosphite-pyridine (P,N) ligands derived from (S)-2-amino-T-hydroxy-6,6'-dimethyl-1,1'-biphenyl and (S)-2-amino-2'-hydroxy-4,4',6,6'-tetramethyl-1,1'-biphenyl was employed in Cu(I)-catalyzed conjugate addition of diethylzinc to acyclic enones. Excellent enantioselectivities (up to 98% ee) and highly catalytic activities were achieved for a variety of acyclic enones.
Resumo:
Nearly monodisperse Cu-In-S ternary nanocrystals with tunable composition, crystalline structure, and size were synthesized by a hot-injection method using mixed generic precursors. Such ternary nanocrystals with zincblende and wurtzite structure were reported for the first time.
Resumo:
In this work, we illustrate a simple chelation-based strategy to trigger DNA release from DNA-incorporated multilayer films, which were fabricated through the layer-by-layer (LbL) assembly of DNA and inorganic zirconium (IV) ion (Zr4+). After being incubated in several kinds of chelator solutions, the DNA multilayer films disassembled and released the incorporated DNA. This was most probably due to the cleavage of coordination/electrostatic interactions between Zr4+ and phosphate groups of DNA. Surface plasmon resonance (SPR), UV-vis spectrometry and atomic force microscopy (AFM) were used to characterize the assembly and the disassembly of the films.
Resumo:
A layer-by-layer film composed of DNA and inorganic zirconium ion (Zr4+) was fabricated on the surface of gold thin film, and an electric field triggered disintegration of the multilayer film was studied by using electrochemical surface plasmon resonance (EC-SPR). EC-SPR results demonstrated that the film was disassembled upon the application of an electric field and the disassembly rate varied with the applied potential, leading to the controlled release of DNA. The electrodissolution could be switched off by removing the electric potential and reactivated by reapplying the potential.
Resumo:
1D Co/CoFe2O4 composites with tunable morphologies were fabricated by a facile solvothermal route in the presence of a surfactant poly(vinylpyrrolidone) (PVP); they may be very attractive for potential applications because of their outstanding soft magnetism.
Resumo:
A novel method to tune surface wettability rapidly and reversibly has been developed by ion exchange of the counterions at the surface of a multilayer film assembled via electrostatic interaction.
Resumo:
Rhombohedral-calcite and hexagonal-vaterite types of LuBO:Eu3+ microparticles with various complex self-assembled 3D architectures have been prepared selectively by an efficient surfactant- and template-free hydrothermal process for the first time. X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, photoluminescence, and cathodoluminescence spectra as well as kinetic decays were used to characterize the samples.
Resumo:
Tb(1-x)BO3:xEu(3+) (x = 0-1) microsphere phosphors have been successfully prepared by a simple hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL), low-voltage cathodoluminescence (CL), and time-resolved emission spectra as well as lifetimes were used to characterize the samples.
Resumo:
Autofluorescent single polyelectrolyte microcapsules, exemplified by poly-L-lysine (PLL), have been prepared through glutaraldehyde-mediated covalent layer-by-layer (LbL) assembly and subsequent core removal. CaCO3 microparticles were used as template cores for the LbL deposition and removed by treatment of ethylenediamine tetraacetic acid disodium salt (EDTA). The prepared microcapsules, without conjugating an exterior fluorochrome, exhibited evenly distributed fluorescence.
Resumo:
A series of D-pi-A-pi-D type of near-infrared (NIR) fluorescent compounds based on benzobis(thia diazole) and its selenium analogues were synthesized and fully characterized by H-1 and C-13 NMR, high-resolution mass spectrometry, and elemental analysis. The absorption fluorescence, and electrochemical properties were also studied. Photoluminescence of these chromophores ranges from 900 to 1600 nm and their band gaps are between 1.19 and 0.56 eV.
Resumo:
A series of novel pH- and temperature-responsive diblock copolymers composed of poly(N-isopropylacrylamide) (PNIPAM) and poly[(L-glutamic acid)-co-(gamma-benzyl L-glutamate)] [P(GA-co-BLG)] were prepared. The influence of hydrophobic benzyl groups on the phase transition of the copolymers was studied for the first time. With increasing BLG content in P(GA-co-BLG) block, the thermal phase transition of the diblock copolymer became sharper at a designated pH and the critical curve of phase diagram of the diblock copolymer shifted to a higher pH region.
Resumo:
A simple layer-by-layer (LBL) electrostatic adsorption technique was developed for deposition of films composed of alternating layers of positively charged poly(diallyldimethylammonium chloride) (PDDA) and negatively charged multiwall carbon nanotubes bearing platinum nanoparticles (Pt-CNTs). PDDA/Pt-CNT film structure and morphology up to six layers were characterized by scanning electron microscopy and ultraviolet-visible spectroscopy, showing the Pt-CNT layers to be porous and uniformly deposited within the multilayer films.
Resumo:
We developed an approach to realize blue, green and red emission from top-emitting white organic light-emitting diodes (OLEDs) through depositing exterior tunable optical films on top of the OLEDs. Three primary colors for full color display including blue, green and red emission are achieved by controlling the wavelength-dependent transmittance of the multilayer optical films overlaid on the emissive layer.
Resumo:
Here, we report a simple and Sensitive colorimetric detection method for Hg2+ ions With a tunable detection range based on DNA oligonucleotides and unmodified gold nanoparticles (DNA/AuNPs) sensing system. Complementary DNA strands with T-T mismatches could effectively protect AuNPs from salt-induced aggregation. While in the presence of Hg2+ ions T-Hg2+-T coordination chemistry leads to the formation of DNA duplexes, and AuNPs are less well protected thus aggregate at the same salt concentration, accompanying by color change from red to blue. By rationally varying the number of T-T mismatches in DNA oligonucleotides, the detection range could be tuned.