989 resultados para tropical grasses
Resumo:
A long term study on the phenology of tree species of tropical dry deciduous forest ecosystem of Bandipur, South India has revealed patterns of strong seasonality with respect to leaf and fruit initiation as well as their abscission. The distribution of the duration of the various phenological events was observed to be skewed and there was little interannual variation in events such as flowering and fruiting. This suggests that there are, perhaps, no mast flowering or fruiting species present in the deciduous forests. The phenological changes appear to influence the food, feeding, movement patterns and sociality of the major mammals of this dry deciduous ecosystem.
Resumo:
Intensively managed pastures in subtropical Australia under dairy production are nitrogen (N) loaded agro-ecosystems, with an increased pool of N available for denitrification. The magnitude of denitrification losses and N2:N2O partitioning in these agro-ecosystems is largely unknown, representing a major uncertainty when estimating total N loss and replacement. This study investigated the influence of different soil moisture contents on N2 and N2O emissions from a subtropical dairy pasture in Queensland, Australia. Intact soil cores were incubated over 15 days at 80% and 100% water-filled pore space (WFPS), after the application of 15N labelled nitrate, equivalent to 50 kg N ha−1. This setup enabled the direct quantification of N2 and N2O emissions following fertilisation using the 15N gas flux method. The main product of denitrification in both treatments was N2. N2 emissions exceeded N2O emissions by a factor of 8 ± 1 at 80% WFPS and a factor of 17 ± 2 at 100% WFPS. The total amount of N-N2 lost over the incubation period was 21.27 kg ± 2.10 N2-N ha−1 at 80% WFPS and 25.26 kg ± 2.79 kg ha−1 at 100% WFPS respectively. N2 emissions remained high at 100% WFPS, while related N2O emissions decreased. At 80% WFPS, N2 emissions increased constantly over time while N2O fluxes declined. Consequently, N2/(N2 + N2O) product ratios increased over the incubation period in both treatments. N2/(N2 + N2O) product ratios responded significantly to soil moisture, confirming WFPS as a key driver of denitrification. The substantial amount of fertiliser lost as N2 reveals the agronomic significance of denitrification as a major pathway of N loss for sub-tropical pastures at high WFPS and may explain the low fertiliser N use efficiency observed for these agro-ecosystems.
Resumo:
Nitrogen fertiliser is a major source of atmospheric N2O and over recent years there is growing evidence for a non-linear, exponential relationship between N fertiliser application rate and N2O emissions. However, there is still high uncertainty around the relationship of N fertiliser rate and N2O emissions for many cropping systems. We conducted year-round measurements of N2O emission and lint yield in four N rate treatments (0, 90, 180 and 270 kg N ha-1) in a cotton-fallow rotation on a black vertosol in Australia. We observed a nonlinear exponential response of N2O emissions to increasing N fertiliser rates with cumulative annual N2O emissions of 0.55 kg N ha-1, 0.67kg N ha-1, 1.07 kg N ha-1 and 1.89 kg N ha-1 for the four respective N fertiliser rates while no N response to yield occurred above 180N. The N fertiliser induced annual N2O EF factors increased from 0.13% to 0.29% and 0.50% for the 90N, 180N and 270N treatments respectively, significantly lower than the IPCC Tier 1 default value (1.0 %). This non-linear response suggests that an exponential N2O emissions model may be more appropriate for use in estimating emission of N2O from soils cultivated to cotton in Australia. It also demonstrates that improved agricultural N management practices can be adopted in cotton to substantially reduce N2O emissions without affecting yield potential.
Resumo:
Stable carbon isotope ratios of peats dated (by C-14) back to 40 kyr BP from the montane region (> 1800 m asl) of the Nilgiris, southern India, reflect changes in the relative proportions of C3 and C4 plant types, which are influenced by soil moisture (and hence monsoonal precipitation), From prior to 40 kyr BP until 28 kyr BP, a general decline in delta(13)C values from about - 14 per mil to - 19 per mil suggests increased dominance of C3 plants concurrent with increasingly moist conditions, During 28-18 kyr BP there seems relatively little change with delta(13) C of - 19 to - 18 per mil, At about 16 kyr BP a sharp reversal in delta(13)C to a peak of - 14.7 per mil indicates a clear predominance of C4 vegetation associated with arid conditions, possibly during or just after the Last Glacial Maximum, A moist phase at about 9 kyr BP (the Holocene Optimum) with dominance of C3 vegetation type is observed, while arid conditions are re-established during 5-2 kyr BP with an overall dominance of C4 vegetation, New data do not support the occurrence of a moist phase coinciding with the Mediaeval Warm Period (at 0.6 kyr BP) as suggested earlier, Overall, the climate and vegetation in the high altitude regions of the southern Indian tropics seem to have responded to past global climatic changes, and this is consistent with other evidences from India and other tropical regions.
Resumo:
Design considerations are presented for a dense weather radar network to support multiple services including aviation. Conflicts, tradeoffs and optimization issues in the context of operation in a tropical region are brought out. The upcoming Indian radar network is used as a case study. Algorithms for data mosaicing are briefly outlined.
Resumo:
We have evaluated techniques of estimating animal density through direct counts using line transects during 1988-92 in the tropical deciduous forests of Mudumalai Sanctuary in southern India for four species of large herbivorous mammals, namely, chital (Axis axis), sambar (Cervus unicolor), Asian elephant (Elephas maximus) and gaur (Bos gauras). Density estimates derived from the Fourier Series and the Half-Normal models consistently had the lowest coefficient of variation. These two models also generated similar mean density estimates. For the Fourier Series estimator, appropriate cut-off widths for analysing line transect data for the four species are suggested. Grouping data into various distance classes did not produce any appreciable differences in estimates of mean density or their variances, although model fit is generally better when data are placed in fewer groups. The sampling effort needed to achieve a desired precision (coefficient of variation) in the density estimate is derived. A sampling effort of 800 km of transects returned a 10% coefficient of variation on estimate for chital; for the other species a higher effort was needed to achieve this level of precision. There was no statistically significant relationship between detectability of a group and the size of the group for any species. Density estimates along roads were generally significantly different from those in the interior af the forest, indicating that road-side counts may not be appropriate for most species.
Resumo:
The southern Western Ghats tropical montane cloud forest sites (Gavi, Periyar, High wavys and Venniyar), which are characterized by frequent or seasonal cloud cover at the vegetation level, are considered one of the most threatened ecosystems in India and the world. Three out of four montane cloud forest sites studied in the southern Western Ghats had experienced diminishing trends of seasonal average and total rainfall, especially during summer monsoon season. The highest level of reduction for summer monsoon season was observed at Gavi rainforest station (>20 mm/14 years) in Kerala followed by Venniyar (>20 mm/20 years) site in Tamil Nadu. Average annual and total precipitation increased during the study period irrespective of the seasons over Periyar area, and the greatest values were recorded for season 2 (>25 mm/28 years). Positive trends for winter monsoon rainfall has been observed for three stations (Periyar, High wavys and Venniyar) except Gavi, and the trend was positive and significant (90%) for Periyar and High wavys. Increase in summer monsoon rainfall was observed for Periyar site and the trend was found to be significant (95%).
Resumo:
The present paper records the results of a case study on the impact of an extensive grassland fire on the physical and optical properties of aerosols at a semi-arid station in southern India for the first time from ground based measurements using a MICROTOPS-II sunphotometer, an aethalometer and a quartz crystal microbalance impactor (QCM). Observations revealed a substantial increase in aerosol optical depth (AOD) at all wavelengths during burning days compared to normal days. High AOD values observed at shorter wavelengths suggest the dominance of accumulation mode particle loading over the study area. Daily mean aerosol size spectra shows, most of the time, power-law distribution. To characterize AOD, the Angstrom parameters (i.e., alpha and beta) were used. Wavelength exponent (1.38) and turbidity coefficient (0.21) are high during burning days compared to normal days, thereby suggesting an increase in accumulation mode particle loading. Aerosol size distribution suggested dominance of accumulation mode particle loading during burning days compared to normal days. A significant positive correlation was observed between AOD at 500 mn and water vapour and negative correlation between AOD at 500 nm and wind speed for burning and non-burning days. Diurnal variations of black carbon (BC) aerosol mass concentrations increased by a factor of similar to 2 in the morning and afternoon hours during burning period compared to normal days.
Resumo:
Accurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments. In this paper, we propose to assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using a lumped conceptual model (COMFORT). The model is calibrated using a 5 year hydrological monitoring of an experimental watershed under dry deciduous forest in South India (Mule Hole watershed). The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with alternance of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm year(-1) and the evapotranspiration was about 900 mm year(-1) out of which 100 mm year(-1) was uptake from the deep saprolite horizons. The stream flow was 100 mm year(-1) while the groundwater underflow was 80 mm year(-1). The simulation results suggest that (i) deciduous trees can uptake a significant amount of water from the deep regolith, (ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers and (iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Variability in rainfall is known to be a major influence on the dynamics of tropical forests, especially rates and patterns of tree mortality. In tropical dry forests a number of contributing factors to tree mortality, including dry season fire and herbivory by large herbivorous mammals, could be related to rainfall patterns, while loss of water potential in trees during the dry season or a wet season drought could also result in enhanced rates of death. While tree mortality as influenced by severe drought has been examined in tropical wet forests there is insufficient understanding of this process in tropical dry forests. We examined these causal factors in relation to inter-annual differences in rainfall in causing tree mortality within a 50-ha Forest Dynamics Plot located in the tropical dry deciduous forests of Mudumalai, southern India, that has been monitored annually since 1988. Over a 19-year period (1988-2007) mean annual mortality rate of all stems >1 cm dbh was 6.9 +/- 4.6% (range = 1.5-17.5%); mortality rates broadly declined from the smaller to the larger size classes with the rates in stems >30 cm dbh being among the lowest recorded in tropical forest globally. Fire was the main agent of mortality in stems 1-5 cm dbh, elephant-herbivory in stems 5-10 cm dbh, and other natural causes in stems > 10 cm dbh. Elephant-related mortality did not show any relationship to rainfall. On the other hand, fire-related mortality was significantly negatively correlated to quantity of rainfall during the preceding year. Mortality due to other causes in the larger stem sizes was significantly negatively correlated to rainfall with a 2-3-year lag, suggesting that water deficit from mild or prolonged drought enhanced the risk of death but only with a time lag that was greater than similar lags in tree mortality observed in other forest types. In this respect, tropical dry forests growing in regions of high rainfall variability may have evolved greater resistance to rainfall deficit as compared to tropical moist or temperate forests but are still vulnerable to drought-related mortality.
Resumo:
Cool roof coatings have a beneficial impact on reducing the heat load of a range of building types, resulting in reduced cooling energy loads. This study seeks to understand the extent to which cool roof coatings could be used as a residential demand side management (DSM) strategy for retrofitting existing housing in a constrained network area in tropical Australia where peak electrical demand is heavily influenced by residential cooling loads. In particular this study seeks to determine whether simulation software used for building regulation purposes can provide networks with the ‘impact certainty’ required by their DSM principles. The building simulation method is supported by a field experiment. Both numerical and experimental data confirm reductions in total consumption (kWh) and energy demand (kW). The nature of the regulated simulation software, combined with the diverse nature of residential buildings and their patterns of occupancy, however, mean that simulated results cannot be extrapolated to quantify benefits to a broader distribution network. The study suggests that building data gained from regulatory simulations could be a useful guide for potential impacts of widespread application of cool roof coatings in this region. The practical realization of these positive impacts, however, would require changes to the current business model for the evaluation of DSM strategies. The study provides seven key recommendations that encourage distribution networks to think beyond their infrastructure boundaries, recognising that the broader energy system also includes buildings, appliances and people.