981 resultados para treatment of water
Resumo:
Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, Portable Water-filled barriers (PWFB) face challenges such as large lateral displacements, tearing and breakage during impact; especially at higher speeds. This study explores the use of composite action to enhance the crashworthiness of PWFBs and enable their usage at higher speeds. Initially, energy absorption capability of water in PWFB is investigated. Then, composite action of the PWFB with the introduction of steel frame is considered to evaluate its enhanced impact performance. Findings of the study show that the initial height of the impact must be lower than the free surface level of water in a PWFB in order for the water to provide significant crash energy absorption. In general, an impact of a road barrier with 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacements and sloshing response. Information from this research will aid in the design of new generation roadside safety structures aimed to increase safety in modern roadways.
Resumo:
The interaction of water with the fluorine-covered (001) surface of anatase titanium dioxide (TiO2) has been studied within the framework of density functional theory (DFT). Our results show that water dissociation is unfavorable due to repulsive interactions between surface fluorine and oxygen. We also found that the reaction of hydrofluoric acid with a surface hydroxyl group to form a surface Ti–F bond is exothermic, while the removal of fluorine from the surface needs additional energy of about half an eV. Therefore, water molecules are predicted to remain intact at the interface with the F-terminated anatase (001).
Resumo:
A synthetic reevesite-like material has been shown to decolorize selected dyes and degrade phenolic contaminants photocatalytically in water when irradiated with visible light. This material can photoactively decolorize dyes such as bromophenol blue, bromocresol green, bromothymol blue, thymol blue and methyl orange in less than 15 min under visible light radiation in the absence of additional oxidizing agents. Conversely, phenolic compounds suc has phenol, p-chlorophenol and p-nitrophenol are photocat- alytically degraded in approximately 3hwith additional H2O2 when irradiated with visible light. These reactions offer potentially energy effective pathways for the removal of recalcitrant organic waste contaminants.
Resumo:
This paper presents an approach to assess the resilience of a water supply system under the impacts of climate change. Changes to climate characteristics such as rainfall, evapotranspiration and temperature can result in changes to the global hydrological cycle and thereby adversely impact on the ability of water supply systems to meet service standards in the future. Changes to the frequency and characteristics of floods and droughts as well as the quality of water provided by groundwater and surface water resources are the other consequences of climate change that will affect water supply system functionality. The extent and significance of these changes underline the necessity for assessing the future functionality of water supply systems under the impacts of climate change. Resilience can be a tool for assessing the ability of a water supply system to meet service standards under the future climate conditions. The study approach is based on defining resilience as the ability of a system to absorb pressure without going into failure state as well as its ability to achieve an acceptable level of function quickly after failure. In order to present this definition in the form of a mathematical function, a surrogate measure of resilience has been proposed in this paper. In addition, a step-by-step approach to estimate resilience of water storage reservoirs is presented. This approach will enable a comprehensive understanding of the functioning of a water storage reservoir under future climate scenarios and can also be a robust tool to predict future challenges faced by water supply systems under the consequence of climate change.
Resumo:
Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, there are challenges when using portable water-filled barriers (PWFBs) such as large lateral displacements as well as tearing and breakage during impact, especially at higher speeds. In this study, the authors explore the use of composite action to enhance the crashworthiness of PWFBs and enable their use at higher speeds. Initially, we investigated the energy absorption capability of water in PWFB. Then, we considered the composite action of a PWFB with the introduction of a steel frame to evaluate its impact on performance. Findings of the study show that the initial height of impact must be lower than the free surface level of water in a PWFB for the water to provide significant crash energy absorption. In general, impact of a road barrier that is 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacement and sloshing response. Information from this research will aid in the design of next generation roadside safety structures aimed to increase safety on modern roadways.
Resumo:
XRD (X-ray diffraction), XRF (X-ray fluorescence), TG (thermogravimetry), FT-IES (Fourier transform infrared emission spectroscopy), FESEM (field emission scanning electron microscope), TEM (transmission electron microscope) and nitrogen–adsorption–desorption analysis were used to characterize the composition and thermal evolution of the structure of natural goethite. The in situ FT-IES demonstrated the start temperature (250 °C) of the transformation of natural goethite to hematite and the thermodynamic stability of protohematite between 250 and 600 °C. The heated products showed a topotactic relationship to the original mineral based on SEM analysis. Finally, the nitrogen–adsorption–desorption isotherm provided the variation of surface area and pore size distribution as a function of temperature. The surface area displayed a remarkable increase up to 350 °C, and then decreased above this temperature. The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores running parallel to elongated direction of hematite microcrystal. The main pore size varied from 0.99 nm to 3.5 nm when heating temperature increases from 300 to 400 °C. The hematite derived from heating goethite possesses high surface area and favors the possible application of hematite as an adsorbent as well as catalyst carrier.
Resumo:
Detailed mechanisms for the formation of hydroxyl or alkoxyl radicals in the reactions between tetrachloro-p-benzoquinone (TCBQ) and organic hydroperoxides are crucial for better understanding the potential carcinogenicity of polyhalogenated quinones. Herein, the mechanism of the reaction between TCBQ and H2O2 has been systematically investigated at the B3LYP/6-311++G** level of theory in the presence of different numbers of water molecules. We report that the whole reaction can easily take place with the assistance of explicit water molecules. Namely, an initial intermediate is formed first. After that, a nucleophilic attack of H2O2 onto TCBQ occurs, which results in the formation of a second intermediate that contains an OOH group. Subsequently, this second intermediate decomposes homolytically through cleavage of the O-O bond to produce a hydroxyl radical. Energy analyses suggest that the nucleophilic attack is the rate-determining step in the whole reaction. The participation of explicit water molecules promotes the reaction significantly, which can be used to explain the experimental phenomena. In addition, the effects of F, Br, and CH3 substituents on this reaction have also been studied.
Resumo:
Portable water-filled road barriers (PWFB) are roadside structures placed on temporary construction zones to separate work site from moving traffic. Recent changes in governing standards require PWFB to adhere to strict compliance in terms of lateral displacement of the road barriers and vehicle redirectionality. Actual road safety barrier test can be very costly, thus researchers resort to Finite Element Analysis (FEA) in the initial designs phase prior to real vehicle test. There has been many research conducted on concrete barriers and flexible steel barriers using FEA, however not many is done pertaining to PWFB. This research probes a new method to model joint mechanism in PWFB. Two methods to model the joining mechanism are presented and discussed in relation to its practicality and accuracy to real work applications. Moreover, the study of the physical gap and mass of the barrier was investigated. Outcome from this research will benefit PWFB research and allow road barrier designers better knowledge in developing the next generation of road safety structures.
Resumo:
Monte Carlo simulations were used to investigate the relationship between the morphological characteristics and the diffusion tensor (DT) of partially aligned networks of cylindrical fibres. The orientation distributions of the fibres in each network were approximately uniform within a cone of a given semi-angle (θ0). This semi-angle was used to control the degree of alignment of the fibres. The networks studied ranged from perfectly aligned (θ0 = 0) to completely disordered (θ0 = 90°). Our results are qualitatively consistent with previous numerical models in the overall behaviour of the DT. However, we report a non-linear relationship between the fractional anisotropy (FA) of the DT and collagen volume fraction, which is different to the findings from previous work. We discuss our results in the context of diffusion tensor imaging of articular cartilage. We also demonstrate how appropriate diffusion models have the potential to enable quantitative interpretation of the experimentally measured diffusion-tensor FA in terms of collagen fibre alignment distributions.
Resumo:
The prime objective of drying is to enhance shelf life of perishable food materials. As the process is very energy intensive in nature, researchers are trying to minimise energy consumption in the drying process. In order to determine the exact amount of energy needed for drying a food product, understanding the physics of moisture distribution and bond strength of water within the food material is essential. In order understand the critical moisture content, moisture distribution and water bond strength in food material, Thermogravimetric analysis (TGA) can be properly utilised. This work has been conducted to investigate moisture distribution and water bond strength in selected food materials; apple, banana and potato. It was found that moisture distribution and water bond strength influence moisture migration from the food materials. In addition, proportion of different types of water (bound, free, surface water) has been simply identified using TGA. This study provides a better understanding of water contents and its role in drying rate and energy consumption.
Resumo:
Despite advances in psychopharmacology, schizophrenia remains a severely disabling illness. It is now appreciated that cognitive impairment mediates the functional disability associated with the disorder. Cognitive remediation which is defined as “a behavioural training based intervention that aims to improve cognitive processes (attention, memory, executive functioning, social cognition or meta cognition) with the goal of durability and generalization” is a therapeutic approach that improves cognition and when combined with other rehabilitation strategies improves real world functioning (Wykes et al., 2011).
Resumo:
INTRODUCTION: Performance status (PS) 2 patients with non-small cell lung cancer (NSCLC) experience more toxicity, lower response rates, and shorter survival times than healthier patients treated with standard chemotherapy. Paclitaxel poliglumex (PPX), a macromolecule drug conjugate of paclitaxel and polyglutamic acid, reduces systemic exposure to peak concentrations of free paclitaxel and may lead to increased concentrations in tumors due to enhanced vascular permeability. METHODS: Chemotherapy-naive PS 2 patients with advanced NSCLC were randomized to receive carboplatin (area under the curve = 6) and either PPX (210 mg/m/10 min without routine steroid premedication) or paclitaxel (225 mg/m/3 h with standard premedication) every 3 weeks. The primary end point was overall survival. RESULTS: A total of 400 patients were enrolled. Alopecia, arthralgias/myalgias, and cardiac events were significantly less frequent with PPX/carboplatin, whereas grade ≥3 neutropenia and grade 3 neuropathy showed a trend of worsening. There was no significant difference in the incidence of hypersensitivity reactions despite the absence of routine premedication in the PPX arm. Overall survival was similar between treatment arms (hazard ratio, 0.97; log rank p = 0.769). Median and 1-year survival rates were 7.9 months and 31%, for PPX versus 8 months and 31% for paclitaxel. Disease control rates were 64% and 69% for PPX and paclitaxel, respectively. Time to progression was similar: 3.9 months for PPX/carboplatin versus 4.6 months for paclitaxel/carboplatin (p = 0.210). CONCLUSION: PPX/carboplatin failed to provide superior survival compared with paclitaxel/carboplatin in the first-line treatment of PS 2 patients with NSCLC, but the results with respect to progression-free survival and overall survival were comparable and the PPX regimen was more convenient. © 2008International Association for the Study of Lung Cancer.
Resumo:
The 'histone code' is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular 'code' recognized and used by non-histone proteins to regulate specific chromatin functions. One modification, which has received significant attention, is that of histone acetylation. The enzymes that regulate this modification are described as lysine acetyltransferases or KATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The pro-inflammatory environment is increasingly being recognized as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential and current development of histone deacetylases for the treatment of diseases for which a pro-inflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the pro-inflammatory environment. © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Resumo:
The 'histone code' is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as histone acetyltransferases or HATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The proinflammatory environment is increasingly being recognised as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential & current development of histone deacetylases for the treatment of diseases for which a proinflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the proinflammatory environment. © 2009 Bentham Science Publishers Ltd.