942 resultados para tooth length
Resumo:
We have shown that indels in gp120 V4 are associated to the presence of duplicated and palindromic sequences, suggesting that they may be produced by strand-slippage misalignment mechanism. Indels in V4 involved region-specific duplications 9 to 15 bp long, and repeats of various lengths, associated to trinucleotides AAT. No duplications were found in V3 and C3. The frequency of palindromic sequences in individual genes was found to be significantly higher in gp120 (p < or = 3.00E-7), and significantly lower in Tat (p < or = 9.00E-7) than the average frequency calculated over the full genome. The finding of elements of misalignment in association with indels in V4 suggests that these mutations may occur in proviral DNA after integration of HIV into the host genome. It also implies that occurrence of large indels in gp120 is not random but is directed by the presence and distribution of elements of misalignment in the HIV genome.
Resumo:
We have explored the threshold of tolerance of three unrelated cell types to treatments with potential cytoprotective peptides bound to Tat(48-57) and Antp(43-58) cell-permeable peptide carriers. Both Tat(48-57) and Antp(43-58) are well known for their good efficacy at crossing membranes of different cell types, their overall low toxicity, and their absence of leakage once internalised. Here, we show that concentrations of up to 100 microM of Tat(48-57) were essentially harmless in all cells tested, whereas Antp(43-58) was significantly more toxic. Moreover, all peptides bound to Tat(48-57) and Antp(43-58) triggered significant and length-dependent cytotoxicity when used at concentrations above 10 microM in all but one cell types (208F rat fibroblasts), irrespective of the sequence of the cargo. Absence of cytotoxicity in 208F fibroblasts correlated with poor intracellular peptide uptake, as monitored by confocal laser scanning fluorescence microscopy. Our data further suggest that the onset of cytotoxicity correlates with the activation of two intracellular stress signalling pathways, namely those involving JNK, and to a lesser extent p38 mitogen-activated protein kinases. These responses are of particular concern for cells that are especially sensitive to the activation of stress kinases. Collectively, these results indicate that in order to avoid unwanted and unspecific cytotoxicity, effector molecules bound to Tat(48-57) should be designed with the shortest possible sequence and the highest possible affinity for their binding partners or targets, so that concentrations below 10 microM can be successfully applied to cells without harm. Considering that cytotoxicity associated to Tat(48-57)- and Antp(43-58) bound peptide conjugates was not restricted to a particular type of cells, our data provide a general framework for the design of cell-penetrating peptides that may apply to broader uses of intracellular peptide and drug delivery.
Resumo:
Background: To determine whether misalignment structures such as duplications, repeats, and palindromes are associated to insertions/deletions (indels) in gp120, indicating that indels are indeed frameshift mutations generated by DNA misalignment mechanism. Methods: Cloning and sequencing of a fragment of HIV-1 gp120 spanning C2-C4 derived from plasma RNA in 12 patients with early chronic disease and naïve to antiretroviral therapy. Results: Indels in V4 involved always insertion and deletion of duplicated nucleotide segments, and AAT repeats, and were associated to the presence of palindromic sequences. No duplications were detected in V3 and C3. Palindromic sequences occurred with similar frequencies in V3, C3 and V4; the frequency of palindromes in individual genes was found to be significantly higher in structural (gp120, p ≤ 3.00E-7) and significantly lower in regulatory (Tat, p ≤ 9.00E-7) genes, as compared to the average frequency calculated over the full genome. Discussion: Indels in V4 are associated to misalignment structures (i.e. duplications repeat and palindromes) indicating DNA misalignment as the mechanism underlying length variation in V4. The finding that indels in V4 are caused by DNA misalignment has some very important implications: 1) indels in V4 are likely to occur in proviral DNA (and not in RNA), after integration of HIV into the host genome; 2) they are likely to occur as progressive modifications of the early founder virus during chronic infection, as more and more cells get infected; 3) frameshift mutations involving any number of base pairs are likely to occur evenly across gp120; however, only those mutants carrying a functional gp120 (indels as multiples of three base pairs) will be able to perpetuate the virus cycle and to keep spreading through the population.
Resumo:
OBJECTIVE: Critically ill patients are at high risk of malnutrition. Insufficient nutritional support still remains a widespread problem despite guidelines. The aim of this study was to measure the clinical impact of a two-step interdisciplinary quality nutrition program. DESIGN: Prospective interventional study over three periods (A, baseline; B and C, intervention periods). SETTING: Mixed intensive care unit within a university hospital. PATIENTS: Five hundred seventy-two patients (age 59 ± 17 yrs) requiring >72 hrs of intensive care unit treatment. INTERVENTION: Two-step quality program: 1) bottom-up implementation of feeding guideline; and 2) additional presence of an intensive care unit dietitian. The nutrition protocol was based on the European guidelines. MEASUREMENTS AND MAIN RESULTS: Anthropometric data, intensive care unit severity scores, energy delivery, and cumulated energy balance (daily, day 7, and discharge), feeding route (enteral, parenteral, combined, none-oral), length of intensive care unit and hospital stay, and mortality were collected. Altogether 5800 intensive care unit days were analyzed. Patients in period A were healthier with lower Simplified Acute Physiologic Scale and proportion of "rapidly fatal" McCabe scores. Energy delivery and balance increased gradually: impact was particularly marked on cumulated energy deficit on day 7 which improved from -5870 kcal to -3950 kcal (p < .001). Feeding technique changed significantly with progressive increase of days with nutrition therapy (A: 59% days, B: 69%, C: 71%, p < .001), use of enteral nutrition increased from A to B (stable in C), and days on combined and parenteral nutrition increased progressively. Oral energy intakes were low (mean: 385 kcal*day, 6 kcal*kg*day ). Hospital mortality increased with severity of condition in periods B and C. CONCLUSION: A bottom-up protocol improved nutritional support. The presence of the intensive care unit dietitian provided significant additional progression, which were related to early introduction and route of feeding, and which achieved overall better early energy balance.
Resumo:
[Abstract]
Resumo:
The telomere length in nucleated peripheral blood (PB) cells indirectly reflects the mitotic history of their precursors: the hematopoietic stem cells (HSCs). The average length of telomeres in PB leukocytes can be measured using fluorescence in situ hybridization and flow cytometry (flow FISH). We previously used flow FISH to characterize the age-related turnover of HSCs in healthy individuals. In this review, we describe results of recent flow FISH studies in patients with selected hematopoietic stem cell-associated disorders: chronic myelogenous leukemia (CML) and several bone marrow failure syndromes. CML is characterized by a marked expansion of myeloid Philadelphia chromosome positive (Ph+) cells. Nevertheless, nonmalignant (Ph-) HSCs typically coexist in the bone marrow of CML patients. We analyzed the telomere length in > 150 peripheral blood leukocytes (PBLs) and bone marrow samples of patients with CML as well as samples of Ph- T-lymphocytes. Compared to normal controls, the overall telomere fluorescence in PBLs of patients with CML was significantly reduced. However, no telomere shortening was observed in Ph- T-lymphocytes. Patients in late chronic phase (CP) had significantly shorter telomeres than those assessed earlier in CP. Our data suggest that progressive telomere shortening is correlated with disease progression in CML. Within the group of patients with bone marrow failure syndromes, we only found significantly shortened telomeres (compared to age-adjusted controls) in granulocytes from patients with aplastic anemia (AA). Strikingly, the telomere length in granulocytes from AA patients who had recovered after immunosuppressive therapy (recAA) did not differ significantly from controls, whereas untreated patients and nonresponders with persistent severe pancytopenia (sAANR) showed marked and significant telomere shortening compared to healthy donors and patients with recAA. Furthermore, an inverse correlation between age-adjusted telomere length and peripheral blood counts was found in support of a model in which the degree of cytopenia and the amount of telomere shortening are correlated. These results support the concept of extensive proliferation of HSCs in subgroups of AA patients and suggest a potential use of telomere-length measurements as a prognostic tool in this group of disorders as well.
Resumo:
The eccentric contraction mode was proposed to be the primary stimulus for optimum angle (angle at which peak torque occurs) shift. However, the training range of motion (or muscle excursion range) could be a stimulus as important. The aim of this study was to assess the influence of the training range of motion stimulus on the hamstring optimum length. It was hypothesised that performing a single set of concentric contractions beyond optimal length (seated at 80° of hip flexion) would lead to an immediate shift of the optimum angle to longer muscle length while performing it below (supine at 0° of hip flexion) would not provide any shift. Eleven male participants were assessed on an isokinetic dynamometer. In both positions, the test consisted of 30 consecutive knee flexions at 4.19 rad · s⁻¹. The optimum angle was significantly shifted by ∼15° in the direction of longer muscle length after the contractions at 80° of hip flexion, while a non-significant shift of 3° was found at 0°. The hamstring fatigability was not influenced by the hip position. It was concluded that the training range of motion seems to be a relevant stimulus for shifting the optimum angle to longer muscle length. Moreover, fatigue appears as a mechanism partly responsible for the observed shift.
Resumo:
Recently, we examined the spermatogenesis cycle length in two shrews species, Sorex araneus characterized by a very high metabolic rate and a polyandric mating system (sperm competition) resulting in a short cycle and Crocidura russula characterized by a much lower metabolic rate and a monogamous mating system showing a longer cycle. In this study, we investigated the spermatogenesis cycle in Neomys fodiens showing an intermediate metabolic rate. We described the stages of seminiferous epithelium according to the spermatid morphology method and we calculated the cycle length of spermatogenesis using incorporation of 5-bromodeoxyuridine into DNA of the germ cells. Twelve males were injected intraperitoneally with 5-bromodeoxyuridine, and the testes were collected. For cycle length determination, we applied a recently developed statistical method. The calculated cycle length is 8.69 days and the total duration of spermatogenesis based on 4.5 cycles is approximately 39.1 days, intermediate between the duration of spermatogenesis of S. araneus (37.6 days) and C. russula (54.5 days) and therefore congruent with both the metabolic rate hypothesis and the sperm competition hypothesis. Relative testes size of 1.4% of body mass indicates a promiscuous mating system.
Resumo:
The aim of the present study was to determinate the cycle length of spermatogenesis in three species of shrew, Suncus murinus, Sorex coronatus and Sorex minutus, and to assess the relative influence of variation in basal metabolic rate (BMR) and mating system (level of sperm competition) on the observed rate of spermatogenesis, including data of shrew species studied before (Sorex araneus, Crocidura russula and Neomys fodiens). The dynamics of sperm production were determined by tracing 5-bromodeoxyuridine in the DNA of germ cells. As a continuous scaling of mating systems is not evident, the level of sperm competition was evaluated by the significantly correlated relative testis size (RTS). The cycle durations estimated by linear regression were 14.3 days (RTS 0.3%) in Suncus murinus, 9.0 days (RTS 0.5%) in Sorex coronatus and 8.5 days (RTS 2.8%) in Sorex minutus. In regression and multiple regression analyses including all six studied species of shrew, cycle length was significantly correlated with BMR (r2=0.73) and RTS (r2=0.77). Sperm competition as an ultimate factor obviously leads to a reduction in the time of spermatogenesis in order to increase sperm production. BMR may act in the same way, independently or as a proximate factor, revealed by the covariation, but other factors (related to testes size and thus to mating system) may also be involved.
Resumo:
Myotonic dystrophy (DM1) is a multisystemic disease caused by an expansion of CTG repeats in the region of DMPK, the gene encoding DM protein kinase. The severity of muscle disability in DM1 correlates with the size of CTG expansion. As respiratory failure is one of the main causes of death in DM1, we investigated the correlation between respiratory impairment and size of the (CTG)n repeat in DM1 animal models. Using pressure plethysmography the respiratory function was assessed in control and transgenic mice carrying either 600 (DM600) or >1300 CTG repeats (DMSXL). The statistical analysis of respiratory parameters revealed that both DM1 transgenic mice sub-lines show respiratory impairment compared to control mice. In addition, there is no significant difference in breathing functions between the DM600 and DMSXL mice. In conclusion, these results indicate that respiratory impairment is present in both transgenic mice sub-lines, but the severity of respiratory failure is not related to the size of the (CTG)n expansion.
Resumo:
Charcot-Marie-Tooth neuropathy (CMT) represents a heterogenous group of inherited disorders of the peripheral nervous system. One form of autosomal recessive demyelinating CMT (CMT4C, 5q32) is caused by mutations in the gene encoding KIAA1985, a protein of so far unknown function. Here we show that KIAA1985 is exclusively expressed in Schwann cells. KIAA1985 is tethered to cellular membranes through an N-terminal myristic acid anchor and localizes to the perinuclear recycling compartment. A search for proteins that interact with KIAA1985 identified the small GTPase Rab11, a key regulator of recycling endosome functions. CMT4C-related missense mutations disrupt the KIAA1985/Rab11 interaction. Protein binding studies indicate that KIAA1985 functions as a Rab11 effector, as it interacts only with active forms of Rab11 (WT and Q70L) and does not interact with the GDP locked mutant (S25N). Consistent with a function of Rab11 in Schwann cell myelination, myelin formation was strongly impaired when dorsal root ganglion neurons were co-cultured with Schwann cells infected with Rab11 S25N. Our data indicate that the KIAA1985/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelination.
Resumo:
The present study was designed to analyse the effect of the length of exposure to a long photoperiod imposed c. 3 weeks after sowing in spring wheat (cv. UQ189) and barley (cv. Arapiles) to (i) establish whether the response to the number of cycles of exposure is quantitative or qualitative, (ii) determine the existence of a commitment to particular stages well before the stage has been observable, and (iii) study the interrelationships between the effects on final leaf number and phyllochron when the stimulus is provided several days after seedling emergence. Both wheat and barley seemed to respond quantitatively to the number of long-day cycles they were exposed to. However, wheat showed a requirement of approximately 4 long-day cycles to be able to produce a significant response in time to heading. The barley cultivar used in the study was responsive to the minimum length of exposure. The response to extended photoperiod cycles during the stem elongation phase was due to the ‘ memory’ photoperiod effects being related, in the case of wheat, to the fact that the pre-terminal spikelet appearance phase saturated its photoperiod response well before that stage was reached. Therefore, the commitment to the terminal spikelet appearance in wheat may be reached well before this stage could be recognized. As the response in duration to heading exceeded that of the final leaf number, and the stem elongation phase responded to memory effects of photoperiod, the phyllochron of both cereals was responsive to the treatments accelerating the average phyllochron when exposed to longer periods of long days. The response in average phyllochron was due to a switch from bi-linear to linear models of leaf number v. time when the conditions were increasingly inductive, with the phyllochron of the initial (6–8) leaves being similar for all treatments (within each species), and from then on increased.