998 resultados para ternary balanced block design
Resumo:
To achieve better results in the no-tillage system (NTS), it is important to properly manage the cover crop prior to planting by using herbicides, usually glyphosate. The effect of glyphosate on plant coverage is slow, and plants take a few days to die completely. Thus, when applying the herbicide on the same day of planting soybean or corn, cover crops are still alive and standing, causing initial shading on seedlings of the crop and delaying its establishment. Therefore, this study aimed to evaluate the effect of distinct cover crops and their timing of desiccation prior to planting soybean or corn, on crop yield and yield components. Two experiments were installed, one for soybean and another for corn. Each experiment consisted in combining three cover crops (Brachiaria brizantha, common bean or millet) chemically desiccated at two timings before planting the crop (15 or 0 days before planting) under no-tillage system (NTS). Experiments were installed in a completely randomized block design with five replications. Brachiaria brizantha produced the highest amount of biomass; common bean and millet as cover crops allowed higher soybean grain yields; herbicide application under common bean, millet and Brachiaria brizantha 15 days before planting soybean allowed higher crop grain yields; desiccation timing of common bean did not affect corn grain yield; Brachiaria brizantha should be desiccated 15 days before planting corn to allow maximum grain yield; when millet was used as a cover crop, glyphosate application at planting of corn allowed the highest grain yield.
Resumo:
The objective of this work was to evaluate the selectivity of clomazone in two formulations and S-metolachlor applied on shoots of different sizes after pruning of 'Baianinha' cassava. The experiment was arranged in a randomized block design in a factorial 5 x 2 (5 treatments x 2 sizes of shoots after pruning - 10 and 33 cm) with four replications. The herbicides evaluated were: clomazone (encapsulated suspension - 900 g h-1), clomazone (encapsulated suspension - 1,080 g ha-1), clomazone (emulsifiable concentrate 900 g ha-1), S-metolachlor (1,920 g ha-1) and an untreated control. During the experiment, all plots were kept free of weed interference by hand weeding. It was concluded that both the formulations of clomazone and S-metolachlor were selective when applied on both the shoot sizes evaluated. However, the application of S-metolachlor on 33 cm shoots gave higher selectivity to 'Baianinha' cassava plants.
Resumo:
There is little information about the selectivity of herbicides in physic nut (Jatropha curcas) in Brazil. Therefore, this study aimed to evaluate the selectivity of different doses and mixtures of paraquat and diuron in direted-spray applications in physic nut plants in greenhouse conditions. The study used a randomized block design, with five replicates. The treatments were: paraquat (200 and 600 g ha-1), diuron (1,000 and 2,000 g ha-1), paraquat + diuron (200 + 1,000 g ha-1), paraquat + diuron (200 + 2,000 g ha-1), paraquat + diuron (600 + 1,000 g ha-1), paraquat + diuron (600 + 2,000 g ha-1) and a control (no application). Directed-spray application was performed at 70 days after sowing by the lower third of the plants. The treatments of diuron and paraquat + diuron mixtures affected the growth and photosynthetic activity of physic nut plants, injuries being more pronounced at doses of diuron of 2,000 g ha‑1, while the isolated application of paraquat at doses of 200 and 600 g ha-1 showed good selectivity potential for physic nut plants.
Resumo:
The objectives of this study were to evaluate baby corn yield, green corn yield, and grain yield in corn cultivar BM 3061, with weed control achieved via a combination of hoeing and intercropping with gliricidia, and determine how sample size influences weed growth evaluation accuracy. A randomized block design with ten replicates was used. The cultivar was submitted to the following treatments: A = hoeings at 20 and 40 days after corn sowing (DACS), B = hoeing at 20 DACS + gliricidia sowing after hoeing, C = gliricidia sowing together with corn sowing + hoeing at 40 DACS, D = gliricidia sowing together with corn sowing, and E = no hoeing. Gliricidia was sown at a density of 30 viable seeds m-2. After harvesting the mature ears, the area of each plot was divided into eight sampling units measuring 1.2 m² each to evaluate weed growth (above-ground dry biomass). Treatment A provided the highest baby corn, green corn, and grain yields. Treatment B did not differ from treatment A with respect to the yield values for the three products, and was equivalent to treatment C for green corn yield, but was superior to C with regard to baby corn weight and grain yield. Treatments D and E provided similar yields and were inferior to the other treatments. Therefore, treatment B is a promising one. The relation between coefficient of experimental variation (CV) and sample size (S) to evaluate growth of the above-ground part of the weeds was given by the equation CV = 37.57 S-0.15, i.e., CV decreased as S increased. The optimal sample size indicated by this equation was 4.3 m².
Resumo:
The objective of this study was to evaluate oxadiazon sorption in different soils of the Brazilian Cerrado, highlighting the correlations of lethal doses of this herbicide capable of inhibiting 50% of the dry matter accumulation of the bio-indicator (LD50) among the chemical characteristics of the soil and its direct and indirect effects. The experiment was carried out in a greenhouse in a randomized block design and four repetitions. Each experimental unit consisted of a pot with increasing rates of oxadiazon and oat (Avena sativa), as the bio-indicator species. For sorption evaluation, washed sand and 22 soils (substrates) from Cerrado Brazilian's Alliaceae cultivated areas were used. LD50 and sorption ratio (SR) = [(LD50soil - LD50sand)/LD50sand] to the substrates were determined. Pearson correlation analysis was performed between the chemical characteristics of the substrates and the LD50 of oxadiazon. A path analysis was quantified, to deploy only the significant correlations estimated in direct and indirect effects of the characters on LD50, which is a basic variable. A more pronounced LD50 (528.09 g ha-1) for the Cerrado soil sample resulted in higher SR (> 53.00), while in the washed sand substrate, LD50 corresponded only to 9.74 g ha-1 of the oxadiazon (available in soil). It was concluded that oxadiazon sorption is influenced by the chemical characteristics of the soils, highlighting the correlation with pH (CaCl2), magnesium content, aluminum, organic matter, organic carbon, and aluminum saturation.
Resumo:
The aim of this work was to analyze the effect of temperature and light intensity on trumpet flower seed germination, as well as the effect of seeding depth on its emergence. To study the influence of temperature, nine temperature intervals were evaluated, ranging from 15.0 to 40.0 ºC. A randomized block design experiment was used with five replications and 20 seeds per replication, and performed twice. To evaluate light intensity on seed germination, a randomized experimental design was used with eight replications and 25 seeds per replication. The treatments applied were: photoperiod with temperature alternation; photoperiod with constant temperature; darkness with temperature alternation; and darkness with constant temperature. The photoperiod consisted of 8 hours of light and 16 hours of darkness, and the constant temperature was 25 ºC. The treatments with temperature alternations were established with 8 hours at 30 ºC, and 16 hours at 20 ºC. Germination was assessed daily to calculate the total percentage of germination as well as the Germination Velocity Index (GVI). To study the influence of seeding depth on plant emergence, 25 seeds were seeded at 0, 20, 40, and 80 mm in pots with sieved soil. The experiment was arranged in a randomized block design with four replications. Seedling emergence was monitored daily until the 15th day after seeding. After that period, the total percentage of emergence was calculated for each experimental unit, as well as the Emergence Velocity Index (EVI). Formation of normal seedlings and the Germination Velocity Index were different among temperatures and higher germination percentages were observed between 20.3 ºC and 37.5 ºC. Tecoma stans seedlings did not germinate when planted at 40 and 80 mm depth. However, the seedlings placed on the soil surface had an emergence percentage of 72. At 20 mm depth, the emergence rate was 31%.
Resumo:
This study aimed to evaluate the production components and quality of RR soybean seeds (Roundup Ready®), after application of increasing rates of gliphosate. Field experiments were conducted in Mandaguari, Paraná, during two seasons. Treatments consisted of five doses of glyphosate. All applications were performed once, between development stages V4 and V5. The experiment was arranged in a completely randomized block design, with four replicates. Data were subjected to analysis of variance, and when significant, t-tests and a regression analysis were applied to verify the behavior of the treatments. The physiological and sanitary quality, yield and mass of one thousand seeds were evaluated. The results indicated that seed quality can be adversely affected by glyphosate, and also showed a probable reduction in yield components with increasing rates of application.
Resumo:
Plants kept under competition tend to modify their morphology to optimize the use of production factors. This study aimed to evaluate the effects of competition between transgenic maize and five weed species on the growth and yield of transgenic maize hybrid. The experiment used a randomized block design with four replicates in a factorial 5 x 2 + 6 scheme consisting of a combination of maize under competition with five weed species (Bidens pilosa, Commelina benghalensis, Brachiaria brizantha, Sorghum arundinaceum and Ipomoea triloba) in two weed densities (15 or 30 plants m-2) plus six treatments corresponding to maize and weed species without competition. All the means for dry matter accumulated by maize plants in the stem and leaf in the density of 15 plants m ² were higher than the means for plants in coexistence with 30 plants m-². Number of kernels, diameter and length of cob were not affected by competition with weeds. The weeds that most interfered with maize biomass production were S.arundinaceum and B.brizantha. Leaf dry mass accumulation was more sensitive than the production of stem. It was observed that maize was usually very competitive with weeds, and there was a strong decrease in dry matter accumulation of all the weeds in the study when in coexistence with the crop.
Resumo:
The loss of grains during the harvest of glyphosate tolerant corn may generate volunteer plants, which can interfere in the conventional or glyphosate crop in succession. The current work aim to evaluate the control of the volunteer corn glyphosate tolerant under two weed stages. Aimed to evaluate the control of volunteer glyphosate tolerant corn in two stages of development. There were conducted two experiments with hybrid 2B688 HR (lepidoptera and glyphosate tolerant), the application were at V5 and V8 stage. The experiment was randomized block design with four replicates, using the treatments: haloxyfop at 25, 50 and 62 g ha-1 alone and associated with 2,4-D at 670 g ha-1 or fluroxypyr at 200 g ha-1. The standard was clethodim at 84 g ha-1 with 2,4-D and fluroxypyr at same rates. The applications of haloxyfop and clethodim both isolated or in a mixture with 2,4-D and fluroxypyr at V5 stage showed total control (100%) at 32 and 39 days after the application, except for haloxyfop + 2,4-D (25 + 670 g ha-1) mixture, which did not provided adequate control. At V8 stage, haloxyfop + 2,4-D (50 + 670 g ha-1) and haloxyfop + 2,4-D (62 + 670 g ha-1) mixtures took up to 6 and 10 days or longer to reach adequate to excellent control, when compared to haloxyfop isolated applications in the same doses, respectively. Either isolated clethodim or mixed with 2, 4-D and fluroxypyr did not show adequate control. The treatments showed efficient control on volunteer corn plants at V5 stage, except for haloxyfop + 2, 4-D (25 + 670 g ha-1) mixture. At V8 stage applications, haloxyfop either isolated or mixture with fluroxypyr demonstrated excellent control on every evaluated dose. The mixture with 2, 4-D can reduce haloxyfop efficiency at low doses. Clethodim alone or mixed with 2,4-D or furoxypyr did not provide acceptable level of control.
Resumo:
Currently, one of the biggest challenges faced by organic no-tillage farming is weed control. Thus, the use of cropping practices that help in the control of weeds is extremely important. The objective of this study was to evaluate population density and level of weed infestation in an organic no-tillage corn cropping system under different soil covers. The experiment was conducted in a randomized block design with six repetitions and five treatments, consisting of three soil covers in an organic no-tillage system, and an organic and a conventional system, both without soil cover. The treatments with soil cover used a grass species represented by the black oat, a leguminous species represented by the white lupine, and intercropping between both species. Corn was sown with spacing of 1.0 m between rows and 0.20 m between plants, using the commercial hybrid AG 1051. Infestation in corn was evaluated at stages V5 and V10, and weed density was evaluated at stage V5. The use of black oat straw alone or intercropped with white lupine, in the organic no-tillage corn cropping system, reduced the percentage of weed infestation and absolute weed density. Management-intensive systems and systems without soil cover showed higher relative densities for species Oxalis spp., Galinsoga quadriradiata and Stachys arvensis. The species Cyperus rotundus showed the highest relative density on organic no-tillage corn cropping systems. Black oat straw in the organic no-tillage cropping system limited the productive potential of corn.
Resumo:
The weed Borreria densiflora is a management issue in soybean and sugarcane crops from North and Northeastern Brazil. Knowledge upon chemical control of B. densiflora contributes to the integrated management of this weed species, especially when active ingredient options become reduced due to the selection of herbicide resistant or tolerant weed species. Experiments in pre- and post-emergence of B. densiflora were conducted in greenhouse, in a randomized block design and four replications. In pre-emergence, the dose-response curve methodology was used and 7 herbicides were tested. In post-emergence, 9 herbicides at the recommended rate and 4 herbicide mixtures were tested. For pre and post-emergence conditions, evaluations were conducted at 60 and 21 days after treatment (DAT), respectively, and the variables analyzed were weed control and dry weight (%). The results showed options of pre-emergent herbicides that can be used for controlling B. densiflora, especially in sugarcane, where chemical weed control is mainly based on pre-emergent applications. In the current glyphosate resistance scenario, one should consider the use of pre-emergent herbicides within an integrated management of B. densiflora. For satisfactory post-emergence control, B. densiflora plants should be sprayed at the phenological stage of up to three pairs of leaves. Herbicide mixtures have been and will continue to be an important tool in chemical weed management, broadening the spectrum of weed control, while diversifying herbicide mechanisms of action, which helps to prevent or delay the appearance of herbicide resistance.
Resumo:
Cotton is highly susceptible to the interference imposed by weed community, being therefore essential to adopt control measures ensuring the crop yield. Herbicides are the primary method of weed control in large-scale areas of production, and usually more than one herbicide application is necessary due to the extensive crop cycle. This study aimed to evaluate the selectivity of different chemical weed control systems for conventional cotton. The experiment took place in the field in a randomized block design, with twenty nine treatments and four replications in a split plot layout (adjacent double check). Results showed that triple mixtures in pre-emergence increased the chance of observing reductions in the cotton yield. To avoid reductions in crop yield, users should proceed to a maximum mixture of two herbicides in pre-emergence, followed by S-metolachlor over the top, followed by one post-emergence mixture application of pyrithiobac-sodium + trifloxysulfuron-sodium.
Resumo:
Competition between maize and signalgrass can economically cripple the intercropping by the reduced yield of maize and dry matter content of the forage. In seeking to define plant arrangements which make this system more efficient, this research was held with the objective of assessing the effects of interference of densities of signalgrass (Urochloa Brizantha) on nutrition and on maize grain yield. Two field experiments were conducted in a randomized block design with four replications. Treatments were arranged similarly in both experiments, in a 2 x 4 factorial design, the first factor being the dose of Nicosulfuron herbicide applied (0 and 8 g ha-1) and the second factor being the forage seeding rates (0, 2, 4 and 6 kg of seeds per hectare). The interference of signalgrass reduced foliar nitrogen, potassium and phosphorus content in maize plants intercropped with the forage. Higher values of grain yield were observed with the reduction of the spacing and the application of the recommended herbicide underdose (8 g ha-1). It was concluded that, regardless of the seeding density of U. Brizantha, reducing the maize seeding inter-rows spacing, combined with the application of an underdose of Nicosulfuron, caused a positive effect by reducing the initial forage growth, resulting in less interference of Urochloa brizantha on nutrient uptake by the maize plants and grain yield of the crop.
Resumo:
Mobility of atrazine in soil has contributed to the detection of levels above the legal limit in surface water and groundwater in Europe and the United States. The use of new formulations can reduce or minimize the impacts caused by the intensive use of this herbicide in Brazil, mainly in regions with higher agricultural intensification. The objective of this study was to compare the leaching of a commercial formulation of atrazine (WG) with a controlled release formulation (xerogel) using bioassay and chromatographic methods of analysis. The experiment was a split plot randomized block design with four replications, in a (2 x 6) + 1 arrangement. The main formulations of atrazine (WG and xerogel) were allocated in the plots, and the herbicide concentrations (0, 3200, 3600, 4200, 5400 and 8000 g ha-1), in the subplots. Leaching was determined comparatively by using bioassays with oat and chromatographic analysis. The results showed a greater concentration of the herbicide in the topsoil (0-4 cm) in the treatment with the xerogel formulation in comparison with the commercial formulation, which contradicts the results obtained with bioassays, probably because the amount of herbicide available for uptake by plants in the xerogel formulation is less than that available in the WG formulation.
Resumo:
ABSTRACT Growth regulators can be used to further retard or inhibit vegetative growth. In this sense, the objective of this study was to determine the effects of age and number of trinexapac-ethyl applications on the growth and yield of sugarcane. The experiment was in a randomized complete block design with four replications. The treatments were in a 3 x 2 + 2 factorial arrangement, where factor A corresponded to the application times of the plant growth regulator (120, 200 and 240 days after bud burst (DAB) of sugarcane) and factor B to the number of applications (one or two applications). In addition, two controls (one with three applications and another application without the regulator) were added. The application of trinexapac-ethyl decreased the number and the distance between buds, height, root volume and sugarcane yield. The sequential application (2 or 3 times) induced an increase in stem diameter and three applications of the product increased the number of plant tillers. The use of growth regulators applied at 240 DAB has reduced plant height, however without changing the number of buds. It can be concluded that trinexapac-ethyl changes sugarcane growth and yield, regardless of season and number of applications.