917 resultados para tarsal joint


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For speech recognition, mismatches between training and testing for speaker and noise are normally handled separately. The work presented in this paper aims at jointly applying speaker adaptation and model-based noise compensation by embedding speaker adaptation as part of the noise mismatch function. The proposed method gives a faster and more optimum adaptation compared to compensating for these two factors separately. It is also more consistent with respect to the basic assumptions of speaker and noise adaptation. Experimental results show significant and consistent gains from the proposed method. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundamental frequency, or F0 is critical for high quality speech synthesis in HMM based speech synthesis. Traditionally, F0 values are considered to depend on a binary voicing decision such that they are continuous in voiced regions and undefined in unvoiced regions. Multi-space distribution HMM (MSDHMM) has been used for modelling the discontinuous F0. Recently, a continuous F0 modelling framework has been proposed and shown to be effective, where continuous F0 observations are assumed to always exist and voicing labels are explicitly modelled by an independent stream. In this paper, a refined continuous F0 modelling approach is proposed. Here, F0 values are assumed to be dependent on voicing labels and both are jointly modelled in a single stream. Due to the enforced dependency, the new method can effectively reduce the voicing classification error. Subjective listening tests also demonstrate that the new approach can yield significant improvements on the naturalness of the synthesised speech. A dynamic random unvoiced F0 generation method is also investigated. Experiments show that it has significant effect on the quality of synthesised speech. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of motor control, two hypotheses have been controversial: whether the brain acquires internal models that generate accurate motor commands, or whether the brain avoids this by using the viscoelasticity of musculoskeletal system. Recent observations on relatively low stiffness during trained movements support the existence of internal models. However, no study has revealed the decrease in viscoelasticity associated with learning that would imply improvement of internal models as well as synergy between the two hypothetical mechanisms. Previously observed decreases in electromyogram (EMG) might have other explanations, such as trajectory modifications that reduce joint torques. To circumvent such complications, we required strict trajectory control and examined only successful trials having identical trajectory and torque profiles. Subjects were asked to perform a hand movement in unison with a target moving along a specified and unusual trajectory, with shoulder and elbow in the horizontal plane at the shoulder level. To evaluate joint viscoelasticity during the learning of this movement, we proposed an index of muscle co-contraction around the joint (IMCJ). The IMCJ was defined as the summation of the absolute values of antagonistic muscle torques around the joint and computed from the linear relation between surface EMG and joint torque. The IMCJ during isometric contraction, as well as during movements, was confirmed to correlate well with joint stiffness estimated using the conventional method, i.e., applying mechanical perturbations. Accordingly, the IMCJ during the learning of the movement was computed for each joint of each trial using estimated EMG-torque relationship. At the same time, the performance error for each trial was specified as the root mean square of the distance between the target and hand at each time step over the entire trajectory. The time-series data of IMCJ and performance error were decomposed into long-term components that showed decreases in IMCJ in accordance with learning with little change in the trajectory and short-term interactions between the IMCJ and performance error. A cross-correlation analysis and impulse responses both suggested that higher IMCJs follow poor performances, and lower IMCJs follow good performances within a few successive trials. Our results support the hypothesis that viscoelasticity contributes more when internal models are inaccurate, while internal models contribute more after the completion of learning. It is demonstrated that the CNS regulates viscoelasticity on a short- and long-term basis depending on performance error and finally acquires smooth and accurate movements while maintaining stability during the entire learning process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data, information gaps and related monitoring requirements including trans-boundry issues; alternative livelihoods; critical habitat and develoment issues; policy, planning and institutional development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling of the joint probability density function of the mixture fraction and progress variable with a given covariance value is studied. This modeling is validated using experimental and direct numerical simulation (DNS) data. A very good agreement with experimental data of turbulent stratified flames and DNS data of a lifted hydrogen jet flame is obtained. The effect of using this joint pdf modeling to calculate the mean reaction rate with a flamelet closure in Reynolds averaged Navier-Stokes (RANS) calculation of stratified flames is studied. The covariance effect is observed to be large within the flame brush. The results obtained from RANS calculations using this modeling for stratified jet- and rod-stabilized V-flames are discussed and compared to the measurements as a posteriori validation for the joint probability density function model with the flamelet closure. The agreement between the computed and measured values of flame and turbulence quantities is found to be good. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although musculoskeletal models are commonly used, validating the muscle actions predicted by such models is often difficult. In situ isometric measurements are a possible solution. The base of the skeleton is immobilized and the endpoint of the limb is rigidly attached to a 6-axis force transducer. Individual muscles are stimulated and the resulting forces and moments recorded. Such analyses generally assume idealized conditions. In this study we have developed an analysis taking into account the compliances due to imperfect fixation of the skeleton, imperfect attachment of the force transducer, and extra degrees of freedom (dof) in the joints that sometimes become necessary in fixed end contractions. We use simulations of the rat hindlimb to illustrate the consequences of such compliances. We show that when the limb is overconstrained, i.e., when there are fewer dof within the limb than are restrained by the skeletal fixation, the compliances of the skeletal fixation and of the transducer attachment can significantly affect measured forces and moments. When the limb dofs and restrained dofs are matched, however, the measured forces and moments are independent of these compliances. We also show that this framework can be used to model limb dofs, so that rather than simply omitting dofs in which a limb does not move (e.g., abduction at the knee), the limited motion of the limb in these dofs can be more realistically modeled as a very low compliance. Finally, we discuss the practical implications of these results to experimental measurements of muscle actions.