927 resultados para subcompositional coherence
Resumo:
Background: A new commercially available optical low coherence reflectometry device (Lenstar, Haag-Streit or Allegro Biograph, Wavelight) provides high-resolution non-contact measurements of ocular biometry. The study evaluates the validity and repeatability of these measurements compared with current clinical instrumentation. Method: Measurements were taken with the LenStar and IOLMaster on 112 patients aged 41–96 years listed for cataract surgery. A subgroup of 21 patients also had A-scan applanation ultrasonography (OcuScan) performed. Intersession repeatability of the LenStar measurements was assessed on 32 patients Results: LenStar measurements of white-to-white were similar to the IOLMaster (average difference 0.06 (SD 0.03) D; p?=?0.305); corneal curvature measurements were similar to the IOLMaster (average difference -0.04 (0.20) D; p?=?0.240); anterior chamber depth measurements were significantly longer than the IOLMaster (by 0.10 (0.40) mm) and ultrasound (by 0.32 (0.62) mm; p<0.001); crystalline lens thickness measurements were similar to ultrasound (difference 0.16 (0.83) mm, p?=?0.382); axial length measurements were significantly longer than the IOLMaster (by 0.01 (0.02) mm) but shorter than ultrasound (by 0.14 (0.15) mm; p<0.001). The LensStar was unable to take measurements due to dense media opacities in a similar number of patients to the IOLMaster (9–10%). The LenStar biometric measurements were found to be highly repeatable (variability =2% of average value). Conclusions: Although there were some statistical differences between ocular biometry measurements between the LenStar and current clinical instruments, they were not clinically significant. LenStar measurements were highly repeatable and the instrument easy to use.
Resumo:
Gestalt grouping rules imply a process or mechanism for grouping together local features of an object into a perceptual whole. Several psychophysical experiments have been interpreted as evidence for constrained interactions between nearby spatial filter elements and this has led to the hypothesis that element linking might be mediated by these interactions. A common tacit assumption is that these interactions result in response modulation which disturbs a local contrast code. We addressed this possibility by performing contrast discrimination experiments using two-dimensional arrays of multiple Gabor patches arranged either (i) vertically, (ii) in circles (coherent conditions), or (iii) randomly (incoherent condition), as well as for a single Gabor patch. In each condition, contrast increments were applied to either the entire test stimulus (experiment 1) or a single patch whose position was cued (experiment 2). In experiment 3, the texture stimuli were reduced to a single contour by displaying only the central vertical strip. Performance was better for the multiple-patch conditions than for the single-patch condition, but whether the multiple-patch stimulus was coherent or not had no systematic effect on the results in any of the experiments. We conclude that constrained local interactions do not interfere with a local contrast code for our suprathreshold stimuli, suggesting that, in general, this is not the way in which element linking is achieved. The possibility that interactions are involved in enhancing the detectability of contour elements at threshold remains unchallenged by our experiments.
Resumo:
We describe how an acousto-optic tunable filter can be used to both demultiplex the signals from multiple fibre Bragg grating sensors and simultaneously provide wide bandwidth signal demodulation in a system using interferometric wavelength shift detection. In an experimental demonstration, the approach provided a noise limited strain resolution of 24.9 n epsilon Hz(-1/ 2) at 15 Hz.
Resumo:
An optical coherence tomography (OCT) system to produce both longitudinal and transversal images of the in vivo human eye is presented. For the first time, OCT transversal images collected from the living eye at 50-µm depth steps show details unobtainable with the state-of-the-art scanning laser ophthalmoscope. Images of up to 3×3?mm are produced from the retina in less than a second. For images larger than 1.6×1.6?mm, a path modulation is introduced by the galvanometric scanning mirror and is used as an effective phase modulation method.
Resumo:
We show that with a fiberized multiple Michelson-interferometer-type configuration, transverse images from several layers in the human eye can be simultaneously obtained. We demonstrate the principle by producing simultaneous 100×100 pixel en-face images of a 4 mm×4 mm region on a postmortem retina for two depth positions 250 µm apart.
Resumo:
We show that, with suitable optics in the arm of a Michelson interferometer, orthogonal galvo-scanning mirrors build a sampling function in the form of Newton rings when the two interferometer arms are matched. Using a low-coherence source, one can obtain transversal depth-resolved images. A fast display procedure using a storage oscilloscope was devised based on this method.
Resumo:
We describe in the letter a technique for making extended-range interferometric measurements with a coherence multiplexed system by means of a variation on the dual-wavelength technique. The interferometer is illuminated with a single source and the two wavelengths are synthesised at the output by means of an interference filter.
Resumo:
This study investigates informal conversations between native English speakers and international students living and studying in the UK. 10 NNS participants recorded themselves during conversations with native speakers. The audio-recordings were transcribed and a fine-grained, qualitative analysis was employed to examine how the participants jointly achieved both coherence and understanding in the conversations, and more specifically how the NNSs contributed to this achievement. The key areas of investigation focused on features of topic management, such as topic initiations, changes and transitions, and on the impact which any communicative difficulties may have on the topical continuity of the conversations. The data suggested that these conversations flowed freely and coherently, and were marked by a relative scarcity of the communicative difficulties often associated with NS-NNS interactions. Moreover, language difficulties were found to have minimal impact on the topic development of the conversations. Unlike most previous research in the field, the data further indicated that the NNSs were able to make active contributions to the initiation and change of topics, and to employ a range of strategies to manage these effectively and coherently. The study considers the implications which the findings may have for teaching and learning, for second language acquisition research, and for non-native speakers everywhere.
Resumo:
Retinal burns of subthreshold intensity created using micropulsed diode laser, which remain clinically invisible, have been shown to be successful in treating macular edema while minimizing the risk of collateral damage to the retina. A study was conducted to determine whether spectral domain optical coherence tomography (SD-OCT) could be used to detect subthreshold retinal burns created using the 532-nm green wavelength laser. A series of retinal burns of gradually decreasing intensity were created in 10 eyes. Retinal burns produced with duration of laser exposure of 0.03 second or less, although clinically invisible, were detectable on the SD-OCT scan as increased retinal reflectivity confined to the outer retinal layers. This series demonstrates the potential of using SD-OCT imaging to verify delivery of subthreshold laser burns.
Resumo:
Purpose: To demonstrate the importance of OCT examination of fellow, normal eyes in unilateral nAMD follow up clinics. Methods: The authors present three cases of unilateral nAMD who were undergoing treatment with ranibizumab, in whom OCT evaluation of the previously unaffected, asymptomatic fellow eye allowed early diagnosis, treatment and preservation of vision. Fundus examination had previously failed to demonstrate abnormality. Results: Intravitreal anti-VEGF treatment for nAMD has caused a sharp increase in the number of subjects attending macular clinics, frequently overburdening the system. It may sometimes be tempting for hospitals to reduce the workload by for example, concentrating only on OCT examination of the affected eye in cases of unilateral nAMD. The three reported cases demonstrate that OCT scanning of the fellow, previously unaffected eye is essential in detecting asymptomatic nAMD, which gives a better chance of preservation of vision. Conclusions: Patients with unilateral neovascular AMD undergoing review in macular clinics should always undergo OCT scanning of normal, fellow eyes, as otherwise asymptomatic, “invisible” choroidal neovascular membranes may be missed.
Resumo:
Optical coherence tomography (OCT) systems are becoming more commonly used in biomedical imaging and, to enable continued uptake, a reliable method of characterizing their performance and validating their operation is required. This paper outlines the use of femtosecond laser subsurface micro-inscription techniques to fabricate an OCT test artifact for validating the resolution performance of a commercial OCT system. The key advantage of this approach is that by utilizing the nonlinear absorption a three dimensional grid of highly localized point and line defects can be written in clear fused silica substrates.
Resumo:
In Fourier domain optical coherence tomography (FD-OCT), a large amount of interference data needs to be resampled from the wavelength domain to the wavenumber domain prior to Fourier transformation. We present an approach to optimize this data processing, using a graphics processing unit (GPU) and parallel processing algorithms. We demonstrate an increased processing and rendering rate over that previously reported by using GPU paged memory to render data in the GPU rather than copying back to the CPU. This avoids unnecessary and slow data transfer, enabling a processing and display rate of well over 524,000 A-scan/s for a single frame. To the best of our knowledge this is the fastest processing demonstrated to date and the first time that FD-OCT processing and rendering has been demonstrated entirely on a GPU.
Resumo:
In this paper we have done back to back comparison of quantitive phase and refractive index from a microscopic image of waveguide previously obtained by Allsop et al. Paper also shows microscopic image of the first 3 waveguides from the sample. Tomlins et al. have demonstrated use of femtosecond fabricated artefacts as OCT calibration samples. Here we present the use of femtosecond waveguides, inscribed with optimized parameters, to test and calibrate the sensitivity of the OCT systems.
Resumo:
Optical coherence tomography (OCT) is a non-invasive three-dimensional imaging system that is capable of producing high resolution in-vivo images. OCT is approved for use in clinical trials in Japan, USA and Europe. For OCT to be used effectively in a clinical diagnosis, a method of standardisation is required to assess the performance across different systems. This standardisation can be implemented using highly accurate and reproducible artefacts for calibration at both installation and throughout the lifetime of a system. Femtosecond lasers can write highly reproducible and highly localised micro-structured calibration artefacts within a transparent media. We report on the fabrication of high quality OCT calibration artefacts in fused silica using a femtosecond laser. The calibration artefacts were written in fused silica due to its high purity and ability to withstand high energy femtosecond pulses. An Amplitude Systemes s-Pulse Yb:YAG femtosecond laser with an operating wavelength of 1026 nm was used to inscribe three dimensional patterns within the highly optically transmissive substrate. Four unique artefacts have been designed to measure a wide variety of parameters, including the points spread function (PSF), modulation transfer function (MTF), sensitivity, distortion and resolution - key parameters which define the performance of the OCT. The calibration artefacts have been characterised using an optical microscope and tested on a swept source OCT. The results demonstrate that the femtosecond laser inscribed artefacts have the potential of quantitatively and qualitatively validating the performance of any OCT system.