803 resultados para strength retrogression
Resumo:
CD40L is one of the key molecules bridging the activation of specific T cells and the maturation of professional and nonprofessional antigen-presenting cells including B cells. CD4(+) T cells have been regarded as the major T-cell subset that expresses CD40L upon cognate activation; however, we demonstrate here that a putative CD8(+) helper T-cell subset expressing CD40L is induced in human and murine CD8(+) T cells in vitro and in mice immunized with antigen-pulsed dendritic cells. IL-12 and STAT4-mediated signaling was the major instructive cytokine signal boosting the ability of CD8(+) T cells to express CD40L both in vitro and in vivo. Additionally, TCR signaling strength modulated CD40L expression in CD8(+) T cells after primary differentiation in vitro as well as in vivo. The induction of CD40L in CD8(+) T cells regulated by IL-12 and TCR signaling may enable CD8(+) T cells to respond autonomously of CD4(+) T cells. Thus, we propose that under proinflammatory conditions, a self-sustaining positive feedback loop could facilitate the efficient priming of T cells stimulated by high affinity peptide displaying APCs.
Resumo:
Further knowledge of the processes conditioning nitrogen use efficiency (NUE) is of great relevance to crop productivity. The aim of this paper was characterise C and N partitioning during grain filling and their implications for NUE. Cereals such as bread wheat (Triticum aestivum L. cv Califa sur), triticale (× Triticosecale Wittmack cv. Imperioso) and tritordeum (× Tritordeum Asch. & Graebn line HT 621) were grown under low (LN, 5 mm NH4NO3) and high (HN, 15 mm NH4NO3) N conditions. We conducted simultaneous double labelling (12CO2 and 15NH415NO3) in order to characterise C and N partitioning during grain filling. Although triticale plants showed the largest total and ear dry matter values in HN conditions, the large investment in shoot and root biomass negatively affected ear NUE. Tritordeum was the only genotype that increased NUE in both N treatments (NUEtotal), whereas in wheat, no significant effect was detected. N labelling revealed that N fertilisation during post-anthesis was more relevant for wheat and tritordeum grain filling than for triticale. The study also revealed that the investments of C and N in flag leaves and shoots, together with the"waste" of photoassimilates in respiration, conditioned the NUE of plants, and especially under LN. These results suggest that C and N use by these plants needs to be improved in order to increase ear C and N sinks, especially under LN. It is also remarkable that even though tritordeum shows the largest increase in NUE, the low yield of this cereal limits its agronomic value.
Resumo:
In recent years, various types of organic and inorganic materials have been investigated for use as soil stabilizing agents in the construction of highways and airports. Since the properties and environmental conditions of soils vary so greatly from place to place, a stabilizing agent that is suitable for one type of soil may not be satisfactory for another. As a result, it is often desirable to evaluate several stabilizing agents under varying treatment conditions before deciding on a specific one to be used with a given soil. In addition many research programs have been initiated which investigate the effects of these stabilizing agents upon soils.
Resumo:
The purpose of this investigation was to study the flexural fatigue strength of two prestressed steel I-beams which had previously been fabricated in connection with a jointly sponsored project under the auspices of the Iowa State Highway Commission. The beams were prestressed by deflecting them under the action of a concentrated load at the center of a simple span, then welding unstressed high strength steel plates to the top and bottom flanges to retain a predetermined amount of prestress. The beams were rolled sections of A36 steel and the plates were USS "T-1" steel. Each of the two test specimens were subjected to an identical repeated loading until a fatigue failure occurred. The loading was designed to produce stresses equivalent to those which would have occurred in a simulated bridge and amounted to 84 percent of a standard H-15 live load including impact. One of the beams sustained 2,469,100 repetitions of load to failure and the other sustained 2,756,100 cycles. Following the fatigue tests, an experimental study was made to determine the state of stress that had been retained in the prestressed steel beams. This information, upon which the calculated stresses of the test could be superimposed, provided a method of correlating the fatigue strength of the beams with the fatigue information available on the two steels involved.
Resumo:
The effect of curing temperature, in the range of 4.4 to 22.8 degrees C (40 to 73 degrees F), on strength development was studied based on the maturity and pulse velocity measurements in this report. The strength-maturity relationships for various mixes using a Type I cement and using a Type IP cement, respectively, were experimentally developed. The similar curves for early age strength development of both the patching concrete, using a Type I cement with the addition of calcium chloride, and the fast track concrete, using a Type III cement and fly ash, have also been proposed. For the temperature ranges studied, the strength development of concrete can be determined using a pulse velocity measurement, but only for early ages up to 24 hours. These obtained relationships can be used to determine when a pavement can be opened to traffic. The amount of fly ash substitution, up to 30%, did not have a significant influence on the strength-maturity relationship.
Resumo:
A role for gut hormone in bone physiology has been suspected. We evidenced alterations of microstructural morphology (trabecular and cortical) and bone strength (both at the whole-bone - and tissue-level) in double incretin receptor knock-out (DIRKO) mice as compared to wild-type littermates. These results support a role for gut hormones in bone physiology. INTRODUCTION: The two incretins, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), have been shown to control bone remodeling and strength. However, lessons from single incretin receptor knock-out mice highlighted a compensatory mechanism induced by elevated sensitivity to the other gut hormone. As such, it is unclear whether the bone alterations observed in GIP or GLP-1 receptor deficient animals resulted from the lack of a functional gut hormone receptor, or by higher sensitivity for the other gut hormone. The aims of the present study were to investigate the bone microstructural morphology, as well as bone tissue properties, in double incretin receptor knock-out (DIRKO) mice. METHODS: Twenty-six-week-old DIRKO mice were age- and sex-matched with wild-type (WT) littermates. Bone microstructural morphology was assessed at the femur by microCT and quantitative X-ray imaging, while tissue properties were investigated by quantitative backscattered electron imaging and Fourier-transformed infrared microscopy. Bone mechanical response was assessed at the whole-bone- and tissue-level by 3-point bending and nanoindentation, respectively. RESULTS: As compared to WT animals, DIRKO mice presented significant augmentations in trabecular bone mass and trabecular number whereas bone outer diameter, cortical thickness, and cortical area were reduced. At the whole-bone-level, yield stress, ultimate stress, and post-yield work to fracture were significantly reduced in DIRKO animals. At the tissue-level, only collagen maturity was reduced by 9 % in DIRKO mice leading to reductions in maximum load, hardness, and dissipated energy. CONCLUSIONS: This study demonstrated the critical role of gut hormones in controlling bone microstructural morphology and tissue properties.
Resumo:
Respiratory muscle weakness may induce dyspnoea, secretion retention and respiratory failure. Assessing respiratory muscle strength is mandatory in neuromuscular diseases and in case of unexplained dyspnoea. A step by step approach is recommended, starting with simple volitional tests. Using spirometry, respiratory muscle weakness may be suspected on the basis of an abnormal flow-volume loop or a fall of supine vital capacity. When normal, maximal inspiratory and expiratory pressures against a near complete occlusion exclude significant muscle weakness, but low values are more difficult to interpret. Sniff nasal inspiratory pressure is a useful alternative because it is easy and it eliminates the problem of air leaks around the mouthpiece in patients with neuromuscular disorders. The strength available for coughing is easily assessed by measuring peak cough flow. In most cases, these simple non invasive tests are sufficient to confirm or to eliminate significant respiratory muscle weakness and help the timely introduction of ventilatory support or assisted cough techniques. In a minority of patients, a more complete evaluation is necessary using non volitional tests like cervical magnetic stimulation of phrenic nerves.
Resumo:
The current means and methods of verifying that high-strength bolts have been properly tightened are very laborious and time consuming. In some cases, the techniques require special equipment and, in other cases, the verification itself may be somewhat subjective. While some commercially available verification techniques do exist, these options still have some limitations and might be considered costly options. The main objectives of this project were to explore high-strength bolt-tightening and verification techniques and to investigate the feasibility of developing and implementing new alternatives. A literature search and a survey of state departments of transportation (DOTs) were conducted to collect information on various bolt-tightening techniques such that an understanding of available and under-development techniques could be obtained. During the literature review, the requirements for materials, inspection, and installation methods outlined in the Research Council on Structural Connections specification were also reviewed and summarized. To guide the search for finding new alternatives and technology development, a working group meeting was held at the Iowa State University Institute for Transportation October 12, 2015. During the meeting, topics central to the research were discussed with Iowa DOT engineers and other professionals who have relevant experiences.
Resumo:
The purposes of this study were to prospectively determine changes in rotator cuff strength before and after surgical shoulder stabilization by Bristow-Latarjet procedure and to better estimate time needed for rotator cuff strength recovery. 20 patients with recurrent anterior posttraumatic shoulder dislocation underwent internal (IR) and external (ER) rotator isokinetic evaluation before and 3, 6 and 21 months after Bristow-Latarjet surgery. In a seated position with 45° of shoulder abduction in the scapular plane, both shoulders were evaluated concentrically with a Con-Trex® isokinetic dynamometer at 180°∙s - 1, 120°∙s - 1 and 60°∙s - 1. 3 months post-surgery, IR and ER strength of the operated shoulder were significantly lower than before surgery ( - 28±20% for IR, - 17±17% for ER) (P<0.05). At 6 and 21 months post-surgery, IR and ER strength were comparable to strength before surgery; strength recovery is seen at 6 months post-surgery with long-term maintenance at 21 months. Given the weakness 3 months post-surgery, return to sports (including overhead and contact sports) should be discussed, and 6 months post-surgery may be a better point for an athlete to resume practicing sports. Isokinetic rotator cuff strength evaluation appears to be relevant in helping to determine the need of continuing strength rehabilitation. Pre-surgical evaluation contributes to the relevance of later comparisons.
Resumo:
Reproductive success is determined by the presence and timing of encounter of mates. The latter depends on species-specific reproductive characteristics (e.g. initiation/duration of the mating window), season, and reproductive strategies (e.g. intensity of choosiness) that may potentially mitigate constraints imposed by mating windows. Despite their potentially crucial role for fitness and population dynamics, limited evidence exists about mating window initiation, duration and reproductive strategies. Here, we experimentally tested the mechanisms of initiation and the duration of the common lizard's Zootoca vivipara mating window, by manipulating the timing of mate encounter and analyzing its effect on (re-)mating probability. We furthermore tested treatment effects on female reproductive strategies, by measuring female choosiness. The timing of mate encounter and season did not significantly affect mating probability. However, a longer delay until mate encounter reduced female choosiness. Re-mating probability decreased with re-mating delay and was independent of mating delay. This indicates that mating window initiation depends on mate encounter, that its duration is fixed, and that plastic reproductive strategies exist. These findings contrast with previous beliefs and shows that mating windows per se may not necessarily constrain reproductive success, which is congruent with rapid range expansion and absence of positive density-effects on reproductive success (Allee effects). In summary, our results show that predicting the effect of mating windows on reproduction is complex and that experimental evidence is essential for evaluating their effect on reproduction and reproductive strategies, both being important determinants of population dynamics and the colonization of new habitats.
Resumo:
The general objective of this study was to conduct astatistical analysis on the variation of the weld profiles and their influence on the fatigue strength of the joint. Weld quality with respect to its fatigue strength is of importance which is the main concept behind this thesis. The intention of this study was to establish the influence of weld geometric parameters on the weld quality and fatigue strength. The effect of local geometrical variations of non-load carrying cruciform fillet welded joint under tensile loading wasstudied in this thesis work. Linear Elastic Fracture Mechanics was used to calculate fatigue strength of the cruciform fillet welded joints in as-welded condition and under cyclic tensile loading, for a range of weld geometries. With extreme value statistical analysis and LEFM, an attempt was made to relate the variation of the cruciform weld profiles such as weld angle and weld toe radius to respective FAT classes.
Resumo:
The objective of this work was to develop uni- and multivariate models to predict maximum soil shear strength (τmax) under different normal stresses (σn), water contents (U), and soil managements. The study was carried out in a Rhodic Haplustox under Cerrado (control area) and under no-tillage and conventional tillage systems. Undisturbed soil samples were taken in the 0.00-0.05 m layer and subjected to increasing U and σn, in shear strength tests. The uni- and multivariate models - respectively τmax=10(a+bU) and τmax=10(a+bU+cσn) - were significant in all three soil management systems evaluated and they satisfactorily explain the relationship between U, σn, and τmax. The soil under Cerrado has the highest shear strength (τ) estimated with the univariate model, regardless of the soil water content, whereas the soil under conventional tillage shows the highest values with the multivariate model, which were associated to the lowest water contents at the soil consistency limits in this management system.
Resumo:
Rectangular hollow section (RHS) members are components widely used in engineering applications because of their good-looking, good properties in engineering areas and inexpensive cost comparing to members with other sections. The increasing use of RHS in load bearing structures makes it necessary to analyze the fatigue behavior of the RHS members. In this thesis, concentration will be given to the fatigue behavior of the RHS members under variable amplitude pure torsional loading. For the RHS members, failure will normally occur in the corner region if the welded regions are under full penetration. This is because of the complicated stress components' distributions at the RHScorners, where all of three fracture mechanics modes will happen. Mode I is mainly caused by the residual stresses that caused by the manufacturing process. Modes II and III are caused by the applied torsional loading. Stress based Findleymodel is also used to analyze the stress components. Constant amplitude fatigue tests have been done as well as variable amplitude fatigue tests. The specimens under variable amplitude loading gave longer fatigue lives than those under constant amplitude loading. Results from tests show an S-N curvewith slope around 5.
Resumo:
Hitsattujen rakenteiden väsymiskestävyyttä pystytään parantamaan jälkikäsittelymenetelmillä, joistayksi, ultraäänikäsittely muokkaa hitsin geometriaa ja aiheuttaa puristusjäännösjännitystilan. Tässä tutkimuksessa verrataan kokeellisesti kuormaa kantamattoman hitsatun ja ui -käsitellyn rivan väsymislujuutta toisiinsa. Tutkimusohjelmaan kuuluu kahta teräslajia ja sekä vakio - että vaihtuva - amplitudista kuormitusta. Ultraäänikäsittelyllä saavutetaan väsymiskestoiän parantuminen vakio - ja vaihtuva - amplitudisella kuormituksella. Perusaineen lujuudella ei ole merkittää vaikutusta väsymislujuuteen kun liitos on hitsatussa tilassa. Tällöin väsymiskestävyyden määrää hitsin rajaviivan jännityskeskittymä. Ultraäänikäsitellyn hitsatunliitoksen väsymiskestävyys on suurempi korkeamman lujuuden omaavilla teräksillä. Tästä syystä korkealujuuksisten terästen käyttö ultraäänikäsiteltynä väsyttävästi kuormitetuissa kevytrakenteissa on perusteltua.