927 resultados para stochastic cooling
Resumo:
The aim of this thesis is to price options on equity index futures with an application to standard options on S&P 500 futures traded on the Chicago Mercantile Exchange. Our methodology is based on stochastic dynamic programming, which can accommodate European as well as American options. The model accommodates dividends from the underlying asset. It also captures the optimal exercise strategy and the fair value of the option. This approach is an alternative to available numerical pricing methods such as binomial trees, finite differences, and ad-hoc numerical approximation techniques. Our numerical and empirical investigations demonstrate convergence, robustness, and efficiency. We use this methodology to value exchange-listed options. The European option premiums thus obtained are compared to Black's closed-form formula. They are accurate to four digits. The American option premiums also have a similar level of accuracy compared to premiums obtained using finite differences and binomial trees with a large number of time steps. The proposed model accounts for deterministic, seasonally varying dividend yield. In pricing futures options, we discover that what matters is the sum of the dividend yields over the life of the futures contract and not their distribution.
Resumo:
The human neuromuscular system is susceptible to changes within the thermal environment. Cold extrinsic temperatures can significantly reduce muscle and nervous system function and communication, which can have consequences for motor performance. A repeated measures design protocol exposed participants to a 12°C cold water immersion (CWI) up to the ankle, knee, and hip to determine the effect that reduced skin and muscle temperature had on balance and strength task execution. Although a linear reduction in the ability to perform balance tasks was seen from the control condition through to the hip CWI, results from the study indicated a significant reduction in dynamic balance (Star Excursion Balance Test reach distance) performance from only the hip CWI (P<0.05). This reduced performance could have been due to an increase in joint stiffness, increased agonist-antagonist co-contraction, and/or reduced isokinetic muscular strength. Reduced physical performance due to cold temperature could negatively impact outdoor recreational athletics.
Resumo:
Rattlesnakes use their facial pit organs to sense external thermal fluctuations. A temperature decrease in the heat-sensing membrane of the pit organ has the potential to enhance heat flux between their endothermic prey and the thermal sensors, affect the optimal functioning of thermal sensors in the pit membrane and reduce the formation of thermal ‘‘afterimages’’, improving thermal detection. We examined the potential for respiratory cooling to improve strike behaviour, capture, and consumption of endothermic prey in the South American rattlesnake, as behavioural indicators of thermal detection. Snakes with a higher degree of rostral cooling were more accurate during the strike, attacking warmer regions of their prey, and relocated and consumed their prey faster. These findings reveal that by cooling their pit organs, rattlesnakes increase their ability to detect endothermic prey; disabling the pit organs caused these differences to disappear. Rattlesnakes also modify the degree of rostral cooling by altering their breathing pattern in response to biologically relevant stimuli, such as a mouse odour. Our findings reveal that low humidity increases their ability to detect endothermic prey, suggesting that habitat and ambush sites election in the wild may be influenced by external humidity levels as well as temperature.
Asymmetry Risk, State Variables and Stochastic Discount Factor Specification in Asset Pricing Models
Resumo:
Latent variable models in finance originate both from asset pricing theory and time series analysis. These two strands of literature appeal to two different concepts of latent structures, which are both useful to reduce the dimension of a statistical model specified for a multivariate time series of asset prices. In the CAPM or APT beta pricing models, the dimension reduction is cross-sectional in nature, while in time-series state-space models, dimension is reduced longitudinally by assuming conditional independence between consecutive returns, given a small number of state variables. In this paper, we use the concept of Stochastic Discount Factor (SDF) or pricing kernel as a unifying principle to integrate these two concepts of latent variables. Beta pricing relations amount to characterize the factors as a basis of a vectorial space for the SDF. The coefficients of the SDF with respect to the factors are specified as deterministic functions of some state variables which summarize their dynamics. In beta pricing models, it is often said that only the factorial risk is compensated since the remaining idiosyncratic risk is diversifiable. Implicitly, this argument can be interpreted as a conditional cross-sectional factor structure, that is, a conditional independence between contemporaneous returns of a large number of assets, given a small number of factors, like in standard Factor Analysis. We provide this unifying analysis in the context of conditional equilibrium beta pricing as well as asset pricing with stochastic volatility, stochastic interest rates and other state variables. We address the general issue of econometric specifications of dynamic asset pricing models, which cover the modern literature on conditionally heteroskedastic factor models as well as equilibrium-based asset pricing models with an intertemporal specification of preferences and market fundamentals. We interpret various instantaneous causality relationships between state variables and market fundamentals as leverage effects and discuss their central role relative to the validity of standard CAPM-like stock pricing and preference-free option pricing.
Resumo:
The GARCH and Stochastic Volatility paradigms are often brought into conflict as two competitive views of the appropriate conditional variance concept : conditional variance given past values of the same series or conditional variance given a larger past information (including possibly unobservable state variables). The main thesis of this paper is that, since in general the econometrician has no idea about something like a structural level of disaggregation, a well-written volatility model should be specified in such a way that one is always allowed to reduce the information set without invalidating the model. To this respect, the debate between observable past information (in the GARCH spirit) versus unobservable conditioning information (in the state-space spirit) is irrelevant. In this paper, we stress a square-root autoregressive stochastic volatility (SR-SARV) model which remains true to the GARCH paradigm of ARMA dynamics for squared innovations but weakens the GARCH structure in order to obtain required robustness properties with respect to various kinds of aggregation. It is shown that the lack of robustness of the usual GARCH setting is due to two very restrictive assumptions : perfect linear correlation between squared innovations and conditional variance on the one hand and linear relationship between the conditional variance of the future conditional variance and the squared conditional variance on the other hand. By relaxing these assumptions, thanks to a state-space setting, we obtain aggregation results without renouncing to the conditional variance concept (and related leverage effects), as it is the case for the recently suggested weak GARCH model which gets aggregation results by replacing conditional expectations by linear projections on symmetric past innovations. Moreover, unlike the weak GARCH literature, we are able to define multivariate models, including higher order dynamics and risk premiums (in the spirit of GARCH (p,p) and GARCH in mean) and to derive conditional moment restrictions well suited for statistical inference. Finally, we are able to characterize the exact relationships between our SR-SARV models (including higher order dynamics, leverage effect and in-mean effect), usual GARCH models and continuous time stochastic volatility models, so that previous results about aggregation of weak GARCH and continuous time GARCH modeling can be recovered in our framework.
Resumo:
This paper employs the one-sector Real Business Cycle model as a testing ground for four different procedures to estimate Dynamic Stochastic General Equilibrium (DSGE) models. The procedures are: 1 ) Maximum Likelihood, with and without measurement errors and incorporating Bayesian priors, 2) Generalized Method of Moments, 3) Simulated Method of Moments, and 4) Indirect Inference. Monte Carlo analysis indicates that all procedures deliver reasonably good estimates under the null hypothesis. However, there are substantial differences in statistical and computational efficiency in the small samples currently available to estimate DSGE models. GMM and SMM appear to be more robust to misspecification than the alternative procedures. The implications of the stochastic singularity of DSGE models for each estimation method are fully discussed.
Resumo:
The paper investigates the pricing of derivative securities with calendar-time maturities.
Resumo:
This paper prepared for the Handbook of Statistics (Vol.14: Statistical Methods in Finance), surveys the subject of stochastic volatility. the following subjects are covered: volatility in financial markets (instantaneous volatility of asset returns, implied volatilities in option prices and related stylized facts), statistical modelling in discrete and continuous time and, finally, statistical inference (methods of moments, quasi-maximum likelihood, likelihood-based and bayesian methods and indirect inference).
Resumo:
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
On étudie l'évolution du prix d'une ressource naturelle non renouvelable dans le cas où cette ressource est durable, c'est-à-dire qu'une fois extraite elle devient un actif productif détenu hors terre. On emprunte à la théorie de la détermination du prix des actifs pour ce faire. Le choix de portefeuille porte alors sur les actifs suivant : un stock de ressource non renouvelable détenu en terre, qui ne procure aucun service productif; un stock de ressource détenu hors terre, qui procure un flux de services productifs; un stock d'un bien composite, qui peut être détenu soit sous forme de capital productif, soit sous forme d'une obligation dont le rendement est donn e. Les productivités du secteur de production du bien composite et du secteur de l'extraction de la ressource évoluent de façon stochastique. On montre que la prédiction que l'on peut tirer quant au sentier de prix de la ressource diffère considérablement de celle qui découle de la règle d'Hotelling élémentaire et qu'aucune prédiction non ambiguë quant au comportement du sentier de prix ne peut être obtenue de façon analytique.