960 resultados para split luciferase complementation assay
Resumo:
Dot enzyme-linked immunosorbent assay (dot-ELISA), indirect ELISA and Western blot were performed to detect the virulent protease secreted by Vibrio anguillarum which was isolated from the diseased left-eyed flounder, Paralichthys olivaceous. Sensitivity results showed that dot-ELISA is a more sensitive, rapid and simple technique for the protease detection. The minimal detectable amount of protease is about 7 pg in the dot-ELISA test, while 7.8 ng in the indirect ELISA and 6.25 ng in the Western blot respectively. Protease could be detected 2 h after incubation of V. anguillarum in the 2216E liquid medium but enzyme activity was very low at that period. From 6 to 12 h, the amount and enzyme activity of protease increased markedly and reached maximum at stationary phase. Analysis of serum samples periodically collected from the infected flounders showed that after 2 h of infection by V. anguillarum, the pathogenic bacteria could be detected in the blood of the infected flounders but no protease was found. It was 5 similar to 6 h after infection that the protease was detected in blood and then the amount increased as infection advanced. Quantitative detection of protease either incubation in the medium or from the blood of infected flounders could be accomplished in virtue of positive controls of quantificational protease standards ("marker") so that the alterations of protease secretion both in vitro and in vivo could be understood generally. In addition, the indirect ELISA and dot-ELISA were also performed to detect V. anguillarum cells. Results indicated that the sensitivity of indirect ELISA to bacteria cells is higher than that of the dot-ELISA, and that the minimal detectable amount is approximately 10(4) cell/mL in the indirect ELISA, while 10(5) cell/mL in the dot-ELISA.
Resumo:
We tested the applicability of the random amplified polymorphic deoxyribonucleic acid (RAPD) analysis for identification of three marine fish cell lines FG. SPH, and RSBK and as a possible tool to detect cross-contamination. Sixth commercial 10-mer RAPD primers were tested on the cell lines and on samples collected from individual fish. The results obtained showed that the cell lines could be identified to the correspondent species on the basis of identical Patterns produced by 35-48% of the primers tested. the total mean similarity indices for cell lines versus correspondent species of individual fish ranged from 0.825 to 0.851. indicating the existence of genetic variation in these cell lines in relation to the species of their origin. Also, four primers, which gave a monomorphic hand pattern within species/line, but different among the species/line, were obtained. These primers can be useful for identification of these cell lines and for characterization of the genetic variation of these cell lines in relation to the species of their origin. This supported the use of RAPD analysis as an effective tool in species identification and cross-contamination test among different cell lines.
Resumo:
A method based on protein phosphatase enzyme activity inhibition for the detection of diarrhetic shellfish poison (DSP) was used to analyze the DSP toxicity in three oyster samples. Based on the standard dose-effect curve developed with a series of okadaic acid (OA) standard solutions, the DSP toxicity of the three oyster samples collected were screened, and the results showed that there were no OA and dinophysis toxins ( DTXs) in the samples without hydrolization. However, the OA toxicity could be detected in two of the hydrolyzed samples, and the OA toxicity of the two samples were 1.81 and 1.21 mu g OA eq./kg oyster, respectively.
Resumo:
An impedimetric immunosensor was fabricated for rapid and non-labeled detection of sulfate-reducing bacteria, Desulforibrio caledoiensis (SRB) by immobilizing lectin-Concanavalin A using an agglutination assay. The immobilization of lectin was conducted using amine coupling on the surface of a gold (Au) electrode assembled with 11-Mercaptounclecanoic acid. Electrochemical impedance spectroscopy (EIS) was used to verify the stepwise assembly of the sensor system. The work conditions of the impedimetric immunosensor, such as pH of the buffer solutions and the incubation time of lectin, were optimized. Faradic impedance spectra for charge transfer for the redox probe Fe(CN)(6)(3-/4-) were measured to determine SRB concentrations. The diameter of the Nyquist diagram that is equal to the charge-transfer resistance (RI) increased with increasing SRB concentration. A linear relationship between R-ct and SRB concentration was obtained in SRB concentration range of 1.8 to 1.8 x 10(7) cfu/ml. The variation of the SRB population during the growth process was also monitored using the impedimetric immunosensor. This approach has great potential for simple, low-cost. and time-saving monitoring of microbial populations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This project was carried out with the aims to investigate the mechanism of circadian immune regulation by one of the core Clock gene, mPer2. To achieve this, we selected mPer2 knock out (mPer2-/-) mice as the optimal animal model. Two different approaches were performed. In the first approach, we injected WT or mPer2-/- mice with an equal dosage of lipopolysaccharide (LPS), and systematically measured serum corticosterone induction, expression of core Clock genes, as well as a key enzyme for corticosterone metabolism (mStAR) in adrenal gland. We found that the acute induction of corticosterone and mStAR were closely associated with the circadian immune response to LPS. Besides, real time quantitative PCR (q-PCR) and luciferase assay consistently showed that mStAR is a Clock controlled gene in adrenal gland, where its expression is negatively influenced by mPer2. In the second approach, expression level and circadian manner of 11 cytotoxicity regulation genes in WT or mPer2-/- mice bone marrow were measured by q-PCR in order to explore the candidate genes which could mediate the circadian immune regulation by mPer2. We found that expression level of Ly49C, Ly49I, and Nkg2d was significant down-regulated in mPer2-/- mice. Further, we found that daily expression of Ly49C and Nkg2d fluctuated in a circadian manner in WT mice, where these rhythms were disrupted in mPer2-/- mice. Thus, it was suggested that these two cytotoxic genes were two clock controlled genes whose circadian expression were regulated by mPer2. Taken together, our results suggested that corticosterone, mStAR, Ly49C, and Nkg2d were four candidate molecules that may mediate the circadian immune response regulation by mPer2.
Resumo:
Ebolaviruses (EBOVs) are among the most virulent and deadly pathogens ever known, causing fulminant haemorrhagic fevers in humans and non-human primates. The 2014 outbreak of Ebola virus disease (EVD) in West Africa has claimed more lives than all previous EVD outbreaks combined. The EBOV high mortality rates have been related to the virus-induced impairment of the host innate immunity reaction due to two virus-coded proteins, VP24 and VP35. EBOV VP35 is a multifunctional protein, it is essential for viral replication as a component of the viral RNA polymerase and it also participates in nucleocapsid assembly. Early during EBOV infection, alpha-beta interferon (IFN-α/β) production would be triggered upon recognition of viral dsRNA products by cytoplasmic retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs). However, this recognition is efficiently prevented by the double-stranded RNA (dsRNA) binding activity of the EBOV VP35 protein, which hides RLRs binding sites on the dsRNA phosphate backbone as well the 5’-triphosphate (5’-ppp) dsRNA ends to RIG-I recognition. In addition to dsRNA binding and sequestration, EBOV VP35 inhibits IFN-α/β production preventing the activation of the IFN regulatory factor 3 (IRF-3) by direct interaction with cellular proteins. Previous studies demonstrated that single amino acid changes in the VP35 dsRNA binding domain reduce EBOV virulence, indicating that VP35 is an attractive target for antiviral drugs development. Within this context, here we report the establishment of a novel method to characterize the EBOV VP35 inhibitory function of the dsRNA-dependent RIG-I-mediated IFN-β signaling pathway in a BLS2 cell culture setting. In such system, a plasmid containing the promoter region of IFN-β gene linked with a luciferase reporter gene was transfected, together with a EBOV VP35 mammalian expression plasmid, into the IFN-sensitive A549 cell line, and the IFN-induction was stimulated through dsRNA transfection. Through alanine scanning mutational studies with biochemical, cellular and computational methods we highlighted the importance of some VP35 residues involved in dsRNA end-capping binding, such as R312, K282 and R322, that may serve as target for the development of small-molecule inhibitors against EBOV. Furthermore, we identified a synthetic compound that increased IFN-induction only under antiviral response stimulation and subverted VP35 inhibition, proving to be very attractive for the development of an antiviral drug. In conclusion, our results provide the establishment of a new assay as a straightforward tool for the screening of antiviral compounds that target i) dsRNA-VP35 or cellular protein-VP35 interaction and ii) dsRNA-dependent RIG-I-mediated IFN signaling pathway, in order to potentiate the IFN response against VP35 inhibition, setting the bases for further drug development.
Resumo:
An improved method for deformable shape-based image segmentation is described. Image regions are merged together and/or split apart, based on their agreement with an a priori distribution on the global deformation parameters for a shape template. The quality of a candidate region merging is evaluated by a cost measure that includes: homogeneity of image properties within the combined region, degree of overlap with a deformed shape model, and a deformation likelihood term. Perceptually-motivated criteria are used to determine where/how to split regions, based on the local shape properties of the region group's bounding contour. A globally consistent interpretation is determined in part by the minimum description length principle. Experiments show that the model-based splitting strategy yields a significant improvement in segmention over a method that uses merging alone.
Resumo:
BACKGROUND/AIMS: The intestinal immune system faces large amounts of antigens, and its regulation is tightly balanced by cytokines. In this study, the effect of intestinal flow diversion on spontaneous secretion of interleukin (IL)-4 and interferon (IFN)- gamma was analysed. METHODS: Eight patients (two with Crohn's disease, four with ulcerative colitis, and two with previous colon cancer) carrying a double lumen small bowel stoma after a total colectomy procedure were included in the study. For each patient, eight biopsy samples were taken endoscopically from both the diverted and non-diverted part of the small bowel. Intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs) were isolated separately and assayed for numbers of cells spontaneously secreting IL-4 and/or IFN-gamma by an ELISPOT technique. RESULTS: Compared with the non-diverted mucosa, a significant decrease in the number of spontaneously IFN-gamma secreting CD3 lymphocytes was observed in the diverted small bowel mucosa among both IELs (p = 0.008) and LPLs (p = 0.007). The same results, although less significant, were obtained for IL-4, especially in LPLs (p = 0.01). CONCLUSION: The intestinal content influences the spontaneous secretion of IFN-gamma and IL-4 by intestinal lymphocytes. These results could help to elucidate the anti-inflammatory role of split ileostomy in patients suffering from inflammatory bowel diseases.
Resumo:
BACKGROUND: The etiologic diagnosis of community-acquired pneumonia (CAP) remains challenging in children because blood cultures have low sensitivity. Novel approaches are needed to confirm the role of Streptococcus pneumoniae. METHODS: In this study, pneumococcal aetiology was determined by serology using a subset of blood samples collected during a prospective multicentre observational study of children <15 years of age hospitalised in Belgium with X-ray-confirmed CAP. Blood samples were collected at admission and 3-4 weeks later. Pneumococcal (P)-CAP was defined in the presence of a positive blood or pleural fluid culture. Serotyping of Streptococcus pneumoniae isolates was done with the Quellung reaction. Serological diagnosis was assessed for nine serotypes using World Health Organization validated IgG and IgA serotype-specific enzyme-linked immunosorbent assays (ELISAs). RESULTS: Paired admission/convalescent sera from 163 children were evaluated by ELISA (35 with proven P-CAP and 128 with non proven P-CAP). ELISA detected pneumococci in 82.8% of patients with proven P-CAP. The serotypes identified were the same as with the Quellung reaction in 82% and 59% of cases by IgG ELISA and IgA ELISA, respectively. Overall, ELISA identified a pneumococcal aetiology in 55% of patients with non-proven P-CAP. Serotypes 1 (51.6%), 7F (19%), and 5 (15.7%) were the most frequent according to IgG ELISA. CONCLUSIONS: In conclusion, the serological assay allows recognition of pneumococcal origin in 55% of CAP patients with negative culture. This assay should improve the diagnosis of P-CAP in children and could be a useful tool for future epidemiological studies on childhood CAP etiology.
Resumo:
Described here is a mass spectrometry-based screening assay for the detection of protein-ligand binding interactions in multicomponent protein mixtures. The assay utilizes an oxidation labeling protocol that involves using hydrogen peroxide to selectively oxidize methionine residues in proteins in order to probe the solvent accessibility of these residues as a function of temperature. The extent to which methionine residues in a protein are oxidized after specified reaction times at a range of temperatures is determined in a MALDI analysis of the intact proteins and/or an LC-MS analysis of tryptic peptide fragments generated after the oxidation reaction is quenched. Ultimately, the mass spectral data is used to construct thermal denaturation curves for the detected proteins. In this proof-of-principle work, the protocol is applied to a four-protein model mixture comprised of ubiquitin, ribonuclease A (RNaseA), cyclophilin A (CypA), and bovine carbonic anhydrase II (BCAII). The new protocol's ability to detect protein-ligand binding interactions by comparing thermal denaturation data obtained in the absence and in the presence of ligand is demonstrated using cyclosporin A (CsA) as a test ligand. The known binding interaction between CsA and CypA was detected using both the MALDI- and LC-MS-based readouts described here.
Resumo:
Phosphorylation of GTP-binding-regulatory (G)-protein-coupled receptors by specific G-protein-coupled receptor kinases (GRKs) is a major mechanism responsible for agonist-mediated desensitization of signal transduction processes. However, to date, studies of the specificity of these enzymes have been hampered by the difficulty of preparing the purified and reconstituted receptor preparations required as substrates. Here we describe an approach that obviates this problem by utilizing highly purified membrane preparations from Sf9 and 293 cells overexpressing G-protein-coupled receptors. We use this technique to demonstrate specificity of several GRKs with respect to both receptor substrates and the enhancing effects of G-protein beta gamma subunits on phosphorylation. Enriched membrane preparations of the beta 2- and alpha 2-C2-adrenergic receptors (ARs, where alpha 2-C2-AR refers to the AR whose gene is located on human chromosome 2) prepared by sucrose density gradient centrifugation from Sf9 or 293 cells contain the receptor at 100-300 pmol/mg of protein and serve as efficient substrates for agonist-dependent phosphorylation by beta-AR kinase 1 (GRK2), beta-AR kinase 2 (GRK3), or GRK5. Stoichiometries of agonist-mediated phosphorylation of the receptors by GRK2 (beta-AR kinase 1), in the absence and presence of G beta gamma, are 1 and 3 mol/mol, respectively. The rate of phosphorylation of the membrane receptors is 3 times faster than that of purified and reconstituted receptors. While phosphorylation of the beta 2-AR by GRK2, -3, and -5 is similar, the activity of GRK2 and -3 is enhanced by G beta gamma whereas that of GRK5 is not. In contrast, whereas GRK2 and -3 efficiently phosphorylate alpha 2-C2-AR, GRK5 is quite weak. The availability of a simple direct phosphorylation assay applicable to any cloned G-protein-coupled receptor should greatly facilitate elucidation of the mechanisms of regulation of these receptors by the expanding family of GRKs.