907 resultados para soft tissue tumor


Relevância:

80.00% 80.00%

Publicador:

Resumo:

M. fortuitum is a rapidly growing mycobacterium associated with community-acquired and nosocomial wound, soft tissue, and pulmonary infections. It has been postulated that water has been the source of infection especially in the hospital setting. The aim of this study was to determine if municipal water may be the source of community-acquired or nosocomial infections in the Brisbane area. Between 2007 and 2009, 20 strains of M. fortuitum were recovered from municipal water and 53 patients’ isolates were submitted to the reference laboratory. A wide variation in strain types was identified using repetitive element sequence-based PCR, with 13 clusters of ≥2 indistinguishable isolates, and 28 patterns consisting of individual isolates. The clusters could be grouped into seven similar groups (>95% similarity). Municipal water and clinical isolates collected during the same time period and from the same geographical area consisted of different strain types, making municipal water an unlikely source of sporadic human infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is a malignant astrocytoma of the central nervous system associated with a median survival time of 15 months, even with aggressive therapy. This rapid progression is due in part to diffuse infiltration of single tumor cells into the brain parenchyma, which is thought to involve aberrant interactions between tumor cells and the extracellular matrix (ECM). Here, we test the hypothesis that mechanical cues from the ECM contribute to key tumor cell properties relevant to invasion. We cultured a series of glioma cell lines (U373-MG, U87-MG, U251-MG, SNB19, C6) on fibronectin-coated polymeric ECM substrates of defined mechanical rigidity and investigated the role of ECM rigidity in regulating tumor cell structure, migration, and proliferation. On highly rigid ECMs, tumor cells spread extensively, form prominent stress fibers and mature focal adhesions, and migrate rapidly. As ECM rigidity is lowered to values comparable with normal brain tissue, tumor cells appear rounded and fail to productively migrate. Remarkably, cell proliferation is also strongly regulated by ECM rigidity, with cells dividing much more rapidly on rigid than on compliant ECMs. Pharmacologic inhibition of nonmuscle myosin II–based contractility blunts this rigidity-sensitivity and rescues cell motility on highly compliant substrates. Collectively, our results provide support for a novel model in which ECM rigidity provides a transformative, microenvironmental cue that acts through actomyosin contractility to regulate the invasive properties of GBM tumor cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oral endotracheal tubes (ETTs) and nasogastric tubes (NGT) are common devices used in adult intensive care and numerous options exist for safe and comfortable securement of these devices. The aim of this project was to identify the available range of ETT and NGT securement devices in Australia as a resource for clinicians seeking to explore options for tube stabilisation. This article reports part A of this project: ETT securement options. Part B will report NGT device fixation options. Securing ETTs to ensure a patent airway with minimal ETT movement, promotion of patient comfort and absence of adverse events such as ETT dislodgement, unplanned extubation and device-related injury1, are essential critical care nursing actions. The ETT requires a fixation method that is robust yet does not traumatise or injure the mucosal tissues of the mouth and soft tissue of the lips.2,3 Choice of a securement apparatus is often determined by product availability in our units or hospitals but is also driven by evidence-based practice and clinician preference. Trying to put this information together can be difficult and time-consuming for the bedside clinician...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective To examine the relationship between pubertal timing and physical activity. Study design A longitudinal sample of 143 adolescent girls was assessed at ages 11 and 13 years. Girls' pubertal development was assessed at age 11 with blood estradiol levels, Tanner breast staging criteria, and parental report of pubertal development. Girls were classified as early maturers (n = 41) or later maturers (n = 102) on the basis of their scores on the 3 pubertal development measures. Dependent variables measured at age 13 were average minutes/day of moderate to vigorous and vigorous physical activity as measured by the ActiGraph accelerometer. Results Early-maturing girls had significantly lower self-reported physical activity and accumulated fewer minutes of moderate to vigorous and vigorous physical activity and accelerometer counts per day at age 13 than later maturing girls. These effects v.-ere independent of differences in percentage body fat and self-reported physical activity at age 11. Conclusion Girls experiencing early pubertal maturation at age 11 reported lower subsequent physical activity at age 13 than their later maturing peers. Pubertal maturation, in particular early maturation relative to peers, may lead to declines in physical activity among adolescent girls.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous research has shown that early maturing girls at age I I have lower subsequent physical activity at age 13 in comparison to later maturing girls. Possible reasons for this association have not been assessed. This study examines girls' psychological response to puberty and their enjoyment of physical activity as intermediary factors linking pubertal maturation and physical activity. Participants included 178 girls who were assessed at age 11, of whom 168 were reassessed at age 13. All participants were non-Hispanic white and resided in the US. Three measures of pubertal development were obtained at age I I including Tanner breast stage, estradiol levels, and mothers' reports of girls' development on the Pubertal Development Scale (PDS). Measures of psychological well-being at ages I I and 13 included depression, global self-worth, perceived athletic competence, maturation fears, and body esteem. At age 13, girls' enjoyment of physical activity was assessed using the Physical Activity Enjoyment Scale and their daily minutes of moderate-to-vigorous physical activity (MVPA) were assessed using objective monitoring. Structural Equation Modeling was used to assess direct and indirect pathways between pubertal development at age I I and MVPA at age 13. In addition to a direct effect of pubertal development on MVPA, indirect effects were found for depression, global self-worth and maturity fears controlling for covariates. In each instance, more advanced pubertal development at age I I was associated with lower psychological wellbeing at age 13, which predicted lower enjoyment of physical activity at age 13 and in turn lower MVPA. Results from this study suggest that programs designed to increase physical activity among adolescent girls should address the self-consciousness and discontent that girls' experience with their bodies during puberty, particularly if they mature earlier than their peers, and identify activities or settings that make differences in body shape less conspicuous.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Infective endocarditis (IE) is a life-threatening infection of the heart endothelium and valves. Staphylococcus aureus is a predominant cause of severe IE and is frequently associated with infections in health care settings and device-related infections. Multilocus sequence typing (MLST), spa typing, and virulence gene microarrays are frequently used to classify S. aureus clinical isolates. This study examined the utility of these typing tools to investigate S. aureus epidemiology associated with IE. Ninety-seven S. aureus isolates were collected from patients diagnosed with (i) IE, (ii) bloodstream infection related to medical devices, (iii) bloodstream infection not related to medical devices, and (iv) skin or soft-tissue infections. The MLST clonal complex (CC) for each isolate was determined and compared to the CCs of members of the S. aureus population by eBURST analysis. The spa type of all isolates was also determined. A null model was used to determine correlations of IE with CC and spa type. DNA microarray analysis was performed, and a permutational analysis of multivariate variance (PERMANOVA) and principal coordinates analysis were conducted to identify genotypic differences between IE and non-IE strains. CC12, CC20, and spa type t160 were significantly associated with IE S. aureus. A subset of virulence-associated genes and alleles, including genes encoding staphylococcal superantigen-like proteins, fibrinogen-binding protein, and a leukocidin subunit, also significantly correlated with IE isolates. MLST, spa typing, and microarray analysis are promising tools for monitoring S. aureus epidemiology associated with IE. Further research to determine a role for the S. aureus IE-associated virulence genes identified in this study is warranted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Footwear remains a prime candidate for the prevention and rehabilitation of Achilles tendinopathy as it is thought to decrease tension in the tendon through elevation of the heel. However, evidence for this effect is equivocal. Purpose: This study used an acoustic transmission technique to investigate the effect of running shoes on Achilles tendon loading during barefoot and shod walking. Methods: Acoustic velocity was measured in the Achilles tendon of twelve recreationally–active males (age, 31±9 years; height, 1.78±0.06 m; weight, 81.0±16.9 kg) during barefoot and shod walking at matched self–selected speed (3.4±0.7 km/h). Standard running shoes incorporating a 10– mm heel offset were used. Vertical ground reaction force and spatiotemporal parameters were determined with an instrumented treadmill. Axial acoustic velocity in the Achilles tendon was measured using a custom built ultrasonic device. All data were acquired at a rate of 100 Hz during 10s of steady–state walking. Statistical comparisons between barefoot and shod conditions were made using paired t–tests and repeated measure ANOVAs. Results: Acoustic velocity in the Achilles tendon was highly reproducible and was typified by two maxima (P1, P2) and minima (M1, M2) during walking. Footwear resulted in a significant increase in step length, stance duration and peak vertical ground reaction force compared to barefoot walking. Peak acoustic velocity in the Achilles tendon (P1, P2) was significantly higher with running shoes. Conclusions: Peak acoustic velocity in the Achilles tendon was higher with footwear, suggesting that standard running shoes with a 10–mm heel offset increase tensile load in the Achilles tendon. Although further research is required, these findings question the therapeutic role of standard running shoes in Achilles tendinopathy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Iterative computational models have been used to investigate the regulation of bone fracture healing by local mechanical conditions. Although their predictions replicate some mechanical responses and histological features, they do not typically reproduce the predominantly radial hard callus growth pattern observed in larger mammals. We hypothesised that this discrepancy results from an artefact of the models’ initial geometry. Using axisymmetric finite element models, we demonstrated that pre-defining a field of soft tissue in which callus may develop introduces high deviatoric strains in the periosteal region adjacent to the fracture. These bone-inhibiting strains are not present when the initial soft tissue is confined to a thin periosteal layer. As observed in previous healing models, tissue differentiation algorithms regulated by deviatoric strain predicted hard callus forming remotely and growing towards the fracture. While dilatational strain regulation allowed early bone formation closer to the fracture, hard callus still formed initially over a broad area, rather than expanding over time. Modelling callus growth from a thin periosteal layer successfully predicted the initiation of hard callus growth close to the fracture site. However, these models were still susceptible to elevated deviatoric strains in the soft tissues at the edge of the hard callus. Our study highlights the importance of the initial soft tissue geometry used for finite element models of fracture healing. If this cannot be defined accurately, alternative mechanisms for the prediction of early callus development should be investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surgical implantations of osseointegrated fixations for bone-anchored prosthesis are developing at an unprecedented pace worldwide while initial skepticism in the orthopedic community is slowly fading away. Clearly, this option is becoming accessible to a wide range of individuals with limb loss. [1-18] The team led by Dr Rickard Branemark has previously published a number of landmark articles focusing on the benefits and safety of the OPRA fixation mainly for individual with lower limb loss, particularly those with transfemoral amputation. [1-3, 19-32] However, similar information is lacking for those with upper limb amputation. This team is once again taking a leading role by sharing a retrospective study focusing on the implant survival, adverse events, implant stability, and bone remodelling for 18 individuals with transhumeral amputation over a 5-year post-operative period. Therefore, a comprehensive analysis of the safety of the procedure is accessible for the first time. In essence, the results showed an implant survival rate of 83% and 80% at 2 and 5 year follow ups, respectively. The most frequent adverse events were superficial skin infections that occurred for 28% (5) participants while the least frequent was deep bone infection that happened only once. More importantly, 38% of complications due to infections were effectively managed with nonoperative treatments (e.g., revision of skin penetration site, local cleaning, antibiotics, restriction of soft tissue mobility). Implant stability and bone remodelling were satisfactory. Clearly, this study provided better understanding of the safety of the OPRA surgical and rehabilitation procedure for individuals with upper limb amputation while establishing standards and benchmark data for future studies. However, strong evidences of the benefits are yet to be demonstrated. However, increase in health related quality of life and functional outcomes (e.g., range of movement) are likely. Altogether, the team of authors are providing further evidence that bone-anchored attachment is definitely a promising alternative to socket prostheses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction & Aims Optimising fracture treatments requires a sound understanding of relationships between stability, callus development and healing outcomes. This has been the goal of computational modelling, but discrepancies remain between simulations and experimental results. We compared healing patterns vs fixation stiffness between a novel computational callus growth model and corresponding experimental data. Hypothesis We hypothesised that callus growth is stimulated by diffusible signals, whose production is in turn regulated by mechanical conditions at the fracture site. We proposed that introducing this scheme into computational models would better replicate the observed tissue patterns and the inverse relationship between callus size and fixation stiffness. Method Finite element models of bone healing under stiff and flexible fixation were constructed, based on the parameters of a parallel rat femoral osteotomy study. An iterative procedure was implemented, to simulate the development of callus and its mechanical regulation. Tissue changes were regulated according to published mechano-biological criteria. Predictions of healing patterns were compared between standard models, with a pre-defined domain for callus development, and a novel approach, in which periosteal callus growth is driven by a diffusible signal. Production of this signal was driven by local mechanical conditions. Finally, each model’s predictions were compared to the corresponding histological data. Results Models in which healing progressed within a prescribed callus domain predicted that greater interfragmentary movements would displace early periosteal bone formation further from the fracture. This results from artificially large distortional strains predicted near the fracture edge. While experiments showed increased hard callus size under flexible fixation, this was not reflected in the standard models. Allowing the callus to grow from a thin soft tissue layer, in response to a mechanically stimulated diffusible signal, results in a callus shape and tissue distribution closer to those observed histologically. Importantly, the callus volume increased with increasing interfragmentary movement. Conclusions A novel method to incorporate callus growth into computational models of fracture healing allowed us to successfully capture the relationship between callus size and fixation stability observed in our rat experiments. This approach expands our toolkit for understanding the influence of different fixation strategies on healing outcomes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The intervertebral disc (IVD) is a unique soft tissue structure which provides structural support and flexibility in the axial skeleton of vertebrates. From a structural perspective, the disc behaves somewhat like a thick walled pressure vessel, where the walls are comprised of a series of composite annular rings (lamellae). However, a prior study (Marchand and Ahmed, 1990) found a high proportion of circumferentially discontinuous lamellae in human lumbar IVDs. The presence of these discontinuities raises important structural questions, because discontinuous lamellae cannot withstand high nucleus pressures via the generation of circumferential (hoop) stress. A possible alternative mechanism may be that inter-lamellar cohesion allows shear stress transfer between adjacent annular layers. The aim of the present study was therefore to investigate the importance of inter-lamellar shear resistance in the intervertebral disc. This work found that inter-lamellar shear resistance has a strong influence on the compressive stiffness of the intervertebral disc, with a change in interface condition from tied (no slip) to frictionless (no shear resistance) reducing disc compressive stiffness by 40%. However, it appears that substantial inter-lamellar shear resistance is present in the bovine tail disc. Decreases in inter-lamellar shear resistance due to degradation of bridging collagenous or elastic fibre structures could therefore be an important part of the process of disc degeneration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION Cadaveric studies have previously documented typical patterns of venous drainage within vertebral bodies (VBs) [1,2,3], comprised primarily of the basivertebral vein, a planar tree like structure at the mid-height of the VB. These studies, however, are limited in the number of samples available, and so have not examined any potential differences in this anatomy in conditions such as scoliosis. MRI is able to create 3D images of soft tissue structures in the spine, including the basivertebral vein without the use of contrast. As a non-invasive imaging technique this opens up the possibility of examining the venous network in multiple VBs within the same subject, in healthy controls as well as in subjects with abnormal anatomy such as adolescent idiopathic scoliosis (AIS). CONCLUSIONS High resolution MRI scans allow in vivo quantification of the vertebral venous system at multiple levels on healthy and scoliotic populations for the first time. The length of the basivertebral vein was seen to have a significant bias to the right hand side of the VB in both healthy and AIS adolescents. The spatial pattern of this vein showed large variations in branching both within and across individuals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several articles in this journal have studied optimal designs for testing a series of treatments to identify promising ones for further study. These designs formulate testing as an ongoing process until a promising treatment is identified. This formulation is considered to be more realistic but substantially increases the computational complexity. In this article, we show that these new designs, which control the error rates for a series of treatments, can be reformulated as conventional designs that control the error rates for each individual treatment. This reformulation leads to a more meaningful interpretation of the error rates and hence easier specification of the error rates in practice. The reformulation also allows us to use conventional designs from published tables or standard computer programs to design trials for a series of treatments. We illustrate these using a study in soft tissue sarcoma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Total hip replacement is the golden standard treatment for severe osteoarthritis refractory for conservative treatment. Aseptic loosening and osteolysis are the major long-term complications after total hip replacement. Foreign body giant cells and osteoclasts are locally formed around aseptically loosening implants from precursor cells by cell fusion. When the foreign body response is fully developed, it mediates inflammatory and destructive host responses, such as collagen degradation. In the present study, it was hypothesized that the wear debris and foreign body inflammation are the forces driving local osteoclast formation, peri-implant bone resorption and enhanced tissue remodeling. Therefore the object was to characterize the eventual expression and the role of fusion molecules, ADAMs (an abbreviation for A Disintegrin And Metalloproteinase, ADAM9 and ADAM12) in the fusion of progenitor cells into multinuclear giant cells. For generation of such cells, activated macrophages trying to respond to foreign debris play an important role. Matured osteoclasts together with activated macrophages mediate bone destruction by secreting protons and proteinases, including matrix metalloproteinases (MMPs) and cathepsin K. Thus this study also assessed collagen degradation and its relationship to some of the key collagenolytic proteinases in the aggressive synovial membrane-like interface tissue around aseptically loosened hip replacement implants. ADAMs were found in the interface tissues of revision total hip replacement patients. Increased expression of ADAMs at both transcriptional and translational levels was found in synovial membrane-like interface tissue of revision total hip replacement (THR) samples compared with that in primary THR samples. These studies also demonstrate that multinucleate cell formation from monocytes by stimulation with macrophage-colony stimiulating factor (M-CSF) and receptor activator of nuclear factor kappa B ligand (RANKL) is characterized by time dependent changes of the proportion of ADAMs positive cells. This was observed both in the interface membrane in patients and in two different in vitro models. In addition to an already established MCS-F and RANKL driven model, a new virally (parainfluenza 2) driven model (of human salivary adenocarcinoma (HSY) cells or green monkey kidney (GMK) cells) was developed to study various fusion molecules and their role in cell fusion in general. In interface membranes, collagen was highly degraded and collagen degradation significantly correlated with the number of local cells containing collagenolytic enzymes, particularly cathepsin K. As a conclusion, fusion molecules ADAM9 and ADAM12 seem to be dynamically involved in cell-cell fusion processes and multinucleate cell formation. The highly significant correlation between collagen degradation and collagenolytic enzymes, particularly cathepsin K, indicates that the local acidity of the interface membrane in the pathologic bone and soft tissue destruction. This study provides profound knowledge about cell fusion and mechanism responsible for aseptic loosening as well as increases knowledge helpful for prevention and treatment.