912 resultados para soft tissue infection
Resumo:
Aims: To report cancer-specific and health-related quality-of-life outcomes in patients undergoing radical chemoradiation (CRT) alone for oesophageal cancer. Materials and methods: Between 1998 and 2005, 56 patients with oesophageal cancer received definitive radical CRT, due to local disease extent, poor general health, or patient choice. Data from European Organization for Research and Treatment of Cancer quality-of-life questionnaires QLQ-30 and QLQ-OES24 were collected prospectively. Questionnaires were completed at diagnosis, and at 3, 6 and 12 months after CRT where applicable. Results: The median follow-up was 18 months. The median overall survival was 14 months, with a 51, 26 and 13% 1-, 3- and 5-year survival, respectively. At 12 months after treatment there was a significant improvement compared with before treatment with respect to dysphagia and pain. Global health scores were not significantly affected. Conclusions: Considering the relatively short long-term survival for this cohort of patients, maximising the quality of those final months should be very carefully borne in mind from the outset. The health-related quality-of-life data reported herein helps to establish benchmarks for larger evaluation within randomised clinical trials. © 2007 The Royal College of Radiologists.
Resumo:
The relationship between coronal knee laxity and the restraining properties of the collateral ligaments remains unknown. This study investigated correlations between the structural properties of the collateral ligaments and stress angles used in computer-assisted total knee arthroplasty (TKA), measured with an optically based navigation system. Ten fresh-frozen cadaveric knees (mean age: 81 ± 11 years) were dissected to leave the menisci, cruciate ligaments, posterior joint capsule and collateral ligaments. The resected femur and tibia were rigidly secured within a test system which permitted kinematic registration of the knee using a commercially available image-free navigation system. Frontal plane knee alignment and varus-valgus stress angles were acquired. The force applied during varus-valgus testing was quantified. Medial and lateral bone-collateral ligament-bone specimens were then prepared, mounted within a uni-axial materials testing machine, and extended to failure. Force and displacement data were used to calculate the principal structural properties of the ligaments. The mean varus laxity was 4 ± 1° and the mean valgus laxity was 4 ± 2°. The corresponding mean manual force applied was 10 ± 3 N and 11 ± 4 N, respectively. While measures of knee laxity were independent of the ultimate tensile strength and stiffness of the collateral ligaments, there was a significant correlation between the force applied during stress testing and the instantaneous stiffness of the medial (r = 0.91, p = 0.001) and lateral (r = 0.68, p = 0.04) collateral ligaments. These findings suggest that clinicians may perceive a rate of change of ligament stiffness as the end-point during assessment of collateral knee laxity.
Resumo:
The non-canonical Wnt pathway, a regulator of cellular motility and morphology, is increasingly implicated in cancer metastasis. In a quantitative PCR array analysis of 84 Wnt pathway associated genes, both non-canonical and canonical pathways were activated in primary and metastatic tumors relative to normal prostate. Expression of the Wnt target gene PITX2 in a prostate cancer (PCa) bone metastasis was strikingly elevated over normal prostate (over 2,000-fold) and primary prostate cancer (over 200-fold). The elevation of PITX2 protein was also evident on tissue microarrays, with strong PITX2 immunostaining in PCa skeletal and, to a lesser degree, soft tissue metastases. PITX2 is associated with cell migration during normal tissue morphogenesis. In our studies, overexpression of individual PITX2A/B/C isoforms stimulated PC-3 PCa cell motility, with the PITX2A isoform imparting a specific motility advantage in the presence of non-canonical Wnt5a stimulation. Furthermore, PITX2 specific shRNA inhibited PC-3 cell migration toward bone cell derived chemoattractant. These experimental results support a pivotal role of PITX2A and non-canonical Wnt signaling in enhancement of PCa cell motility, suggest PITX2 involvement in homing of PCa to the skeleton, and are consistent with a role for PITX2 in PCa metastasis to soft and bone tissues. Our findings, which significantly expand previous evidence that PITX2 is associated with risk of PCa biochemical recurrence, indicate that variation in PITX2 expression accompanies and may promote prostate tumor progression and metastasis.
Resumo:
The future on-road safety of drivers affected by Whiplash Associated Disorder (WAD), the most common soft-tissue injury suffered in a traffic crash, has not been extensively explored. We obtained an anonymised file of 4280 insurance claimants with WAD and, as controls, 1116 claimants with comparably severe soft-tissue injuries who are considered to be at no increased risk than the general population. Their demographic information, road user type and traffic crash records both prior and subsequent to the traffic incident in which the injury occurred, the index crash, were obtained. Rates of subsequent crash involvement in these two groups were then compared, adjusting for age, sex, road user type and prior crash experience. The risk of a subsequent crash in the WAD group relative to controls was 1.14 (95% confidence interval, 0.87–1.48). To allow for differentially altered driving exposure after index crash we distributed a brief survey asking about changes in driving habits after a traffic crash involving injury via physiotherapy clinics and online through the electronic newsletter of a local motoring organisation. The survey yielded responses from 113 drivers who had experienced WAD in a traffic crash and 53 with other soft tissue injuries. There were no differences on average between the groups in their prior driving levels or their percentage change therein at one, three or six months after injury. There was thus no evidence that drivers with WAD are at any higher safety risk than drivers with other types of relatively minor post-crash soft tissue injury.
Resumo:
Epithelial-to-mesenchymal transition (EMT) increases cell migration and invasion, and facilitates metastasis in multiple carcinoma types, but belies epithelial similarities between primary and secondary tumors. This study addresses the importance of mesenchymal-to-epithelial transition (MET) in the formation of clinically significant metastasis. The previously described bladder carcinoma TSU-Pr1 (T24) progression series of cell lines selected in vivo for increasing metastatic ability following systemic seeding was used in this study. It was found that the more metastatic sublines had acquired epithelial characteristics. Epithelial and mesenchymal phenotypes were confirmed in the TSU-Pr1 series by cytoskeletal and morphologic analysis, and by performance in a panel of in vitro assays. Metastatic ability was examined following inoculation at various sites. Epithelial characteristics associated with dramatically increased bone and soft tissue colonization after intracardiac or intratibial injection. In contrast, the more epithelial sublines showed decreased lung metastases following orthotopic inoculation, supporting the concept that EMT is important for the escape of tumor cells from the primary tumor. We confirmed the overexpression of the IIIc subtype of multiple fibroblast growth factor receptors (FGFR) through the TSU-Pr1 series, and targeted abrogation of FGFR2IIIc reversed the MET and associated functionality in this system and increased survival following in vivo inoculation in severe combined immunodeficient mice. This model is the first to specifically model steps of the latter part of the metastatic cascade in isogenic cell lines, and confirms the suspected role of MET in secondary tumor growth.
Resumo:
Oral endotracheal tubes (ETTs) and nasogastric tubes (NGT) are common devices used in adult intensive care and numerous options exist for safe and comfortable securement of these devices. The aim of this project was to identify the available range of ETT and NGT securement devices in Australia as a resource for clinicians seeking to explore options for tube stabilisation. This article reports part A of this project: ETT securement options. Part B will report NGT device fixation options. Securing ETTs to ensure a patent airway with minimal ETT movement, promotion of patient comfort and absence of adverse events such as ETT dislodgement, unplanned extubation and device-related injury1, are essential critical care nursing actions. The ETT requires a fixation method that is robust yet does not traumatise or injure the mucosal tissues of the mouth and soft tissue of the lips.2,3 Choice of a securement apparatus is often determined by product availability in our units or hospitals but is also driven by evidence-based practice and clinician preference. Trying to put this information together can be difficult and time-consuming for the bedside clinician...
Resumo:
Objective To examine the relationship between pubertal timing and physical activity. Study design A longitudinal sample of 143 adolescent girls was assessed at ages 11 and 13 years. Girls' pubertal development was assessed at age 11 with blood estradiol levels, Tanner breast staging criteria, and parental report of pubertal development. Girls were classified as early maturers (n = 41) or later maturers (n = 102) on the basis of their scores on the 3 pubertal development measures. Dependent variables measured at age 13 were average minutes/day of moderate to vigorous and vigorous physical activity as measured by the ActiGraph accelerometer. Results Early-maturing girls had significantly lower self-reported physical activity and accumulated fewer minutes of moderate to vigorous and vigorous physical activity and accelerometer counts per day at age 13 than later maturing girls. These effects v.-ere independent of differences in percentage body fat and self-reported physical activity at age 11. Conclusion Girls experiencing early pubertal maturation at age 11 reported lower subsequent physical activity at age 13 than their later maturing peers. Pubertal maturation, in particular early maturation relative to peers, may lead to declines in physical activity among adolescent girls.
Resumo:
Previous research has shown that early maturing girls at age I I have lower subsequent physical activity at age 13 in comparison to later maturing girls. Possible reasons for this association have not been assessed. This study examines girls' psychological response to puberty and their enjoyment of physical activity as intermediary factors linking pubertal maturation and physical activity. Participants included 178 girls who were assessed at age 11, of whom 168 were reassessed at age 13. All participants were non-Hispanic white and resided in the US. Three measures of pubertal development were obtained at age I I including Tanner breast stage, estradiol levels, and mothers' reports of girls' development on the Pubertal Development Scale (PDS). Measures of psychological well-being at ages I I and 13 included depression, global self-worth, perceived athletic competence, maturation fears, and body esteem. At age 13, girls' enjoyment of physical activity was assessed using the Physical Activity Enjoyment Scale and their daily minutes of moderate-to-vigorous physical activity (MVPA) were assessed using objective monitoring. Structural Equation Modeling was used to assess direct and indirect pathways between pubertal development at age I I and MVPA at age 13. In addition to a direct effect of pubertal development on MVPA, indirect effects were found for depression, global self-worth and maturity fears controlling for covariates. In each instance, more advanced pubertal development at age I I was associated with lower psychological wellbeing at age 13, which predicted lower enjoyment of physical activity at age 13 and in turn lower MVPA. Results from this study suggest that programs designed to increase physical activity among adolescent girls should address the self-consciousness and discontent that girls' experience with their bodies during puberty, particularly if they mature earlier than their peers, and identify activities or settings that make differences in body shape less conspicuous.
Resumo:
Background: Footwear remains a prime candidate for the prevention and rehabilitation of Achilles tendinopathy as it is thought to decrease tension in the tendon through elevation of the heel. However, evidence for this effect is equivocal. Purpose: This study used an acoustic transmission technique to investigate the effect of running shoes on Achilles tendon loading during barefoot and shod walking. Methods: Acoustic velocity was measured in the Achilles tendon of twelve recreationally–active males (age, 31±9 years; height, 1.78±0.06 m; weight, 81.0±16.9 kg) during barefoot and shod walking at matched self–selected speed (3.4±0.7 km/h). Standard running shoes incorporating a 10– mm heel offset were used. Vertical ground reaction force and spatiotemporal parameters were determined with an instrumented treadmill. Axial acoustic velocity in the Achilles tendon was measured using a custom built ultrasonic device. All data were acquired at a rate of 100 Hz during 10s of steady–state walking. Statistical comparisons between barefoot and shod conditions were made using paired t–tests and repeated measure ANOVAs. Results: Acoustic velocity in the Achilles tendon was highly reproducible and was typified by two maxima (P1, P2) and minima (M1, M2) during walking. Footwear resulted in a significant increase in step length, stance duration and peak vertical ground reaction force compared to barefoot walking. Peak acoustic velocity in the Achilles tendon (P1, P2) was significantly higher with running shoes. Conclusions: Peak acoustic velocity in the Achilles tendon was higher with footwear, suggesting that standard running shoes with a 10–mm heel offset increase tensile load in the Achilles tendon. Although further research is required, these findings question the therapeutic role of standard running shoes in Achilles tendinopathy.
Resumo:
Iterative computational models have been used to investigate the regulation of bone fracture healing by local mechanical conditions. Although their predictions replicate some mechanical responses and histological features, they do not typically reproduce the predominantly radial hard callus growth pattern observed in larger mammals. We hypothesised that this discrepancy results from an artefact of the models’ initial geometry. Using axisymmetric finite element models, we demonstrated that pre-defining a field of soft tissue in which callus may develop introduces high deviatoric strains in the periosteal region adjacent to the fracture. These bone-inhibiting strains are not present when the initial soft tissue is confined to a thin periosteal layer. As observed in previous healing models, tissue differentiation algorithms regulated by deviatoric strain predicted hard callus forming remotely and growing towards the fracture. While dilatational strain regulation allowed early bone formation closer to the fracture, hard callus still formed initially over a broad area, rather than expanding over time. Modelling callus growth from a thin periosteal layer successfully predicted the initiation of hard callus growth close to the fracture site. However, these models were still susceptible to elevated deviatoric strains in the soft tissues at the edge of the hard callus. Our study highlights the importance of the initial soft tissue geometry used for finite element models of fracture healing. If this cannot be defined accurately, alternative mechanisms for the prediction of early callus development should be investigated.
Resumo:
Introduction & Aims Optimising fracture treatments requires a sound understanding of relationships between stability, callus development and healing outcomes. This has been the goal of computational modelling, but discrepancies remain between simulations and experimental results. We compared healing patterns vs fixation stiffness between a novel computational callus growth model and corresponding experimental data. Hypothesis We hypothesised that callus growth is stimulated by diffusible signals, whose production is in turn regulated by mechanical conditions at the fracture site. We proposed that introducing this scheme into computational models would better replicate the observed tissue patterns and the inverse relationship between callus size and fixation stiffness. Method Finite element models of bone healing under stiff and flexible fixation were constructed, based on the parameters of a parallel rat femoral osteotomy study. An iterative procedure was implemented, to simulate the development of callus and its mechanical regulation. Tissue changes were regulated according to published mechano-biological criteria. Predictions of healing patterns were compared between standard models, with a pre-defined domain for callus development, and a novel approach, in which periosteal callus growth is driven by a diffusible signal. Production of this signal was driven by local mechanical conditions. Finally, each model’s predictions were compared to the corresponding histological data. Results Models in which healing progressed within a prescribed callus domain predicted that greater interfragmentary movements would displace early periosteal bone formation further from the fracture. This results from artificially large distortional strains predicted near the fracture edge. While experiments showed increased hard callus size under flexible fixation, this was not reflected in the standard models. Allowing the callus to grow from a thin soft tissue layer, in response to a mechanically stimulated diffusible signal, results in a callus shape and tissue distribution closer to those observed histologically. Importantly, the callus volume increased with increasing interfragmentary movement. Conclusions A novel method to incorporate callus growth into computational models of fracture healing allowed us to successfully capture the relationship between callus size and fixation stability observed in our rat experiments. This approach expands our toolkit for understanding the influence of different fixation strategies on healing outcomes.
Resumo:
Mutations of UDP-N-acetyl-alpha-D-galactosamine polypeptide N-acetyl galactosaminyl transferase 3 (GALNT3) result in familial tumoural calcinosis (FTC) and the hyperostosis-hyperphosphataemia syndrome (HHS), which are autosomal recessive disorders characterised by soft-tissue calcification and hyperphosphataemia. To facilitate in vivo studies of these heritable disorders of phosphate homeostasis, we embarked on establishing a mouse model by assessing progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU), and identified a mutant mouse, TCAL, with autosomal recessive inheritance of ectopic calcification, which involved multiple tissues, and hyperphosphataemia; the phenotype was designated TCAL and the locus, Tcal. TCAL males were infertile with loss of Sertoli cells and spermatozoa, and increased testicular apoptosis. Genetic mapping localized Tcal to chromosome 2 (62.64-71.11 Mb) which contained the Galnt3. DNA sequence analysis identified a Galnt3 missense mutation (Trp589Arg) in TCAL mice. Transient transfection of wild-type and mutant Galnt3-enhanced green fluorescent protein (EGFP) constructs in COS-7 cells revealed endoplasmic reticulum retention of the Trp589Arg mutant and Western blot analysis of kidney homogenates demonstrated defective glycosylation of Galnt3 in Tcal/Tcal mice. Tcal/Tcal mice had normal plasma calcium and parathyroid hormone concentrations; decreased alkaline phosphatase activity and intact Fgf23 concentrations; and elevation of circulating 1,25-dihydroxyvitamin D. Quantitative reverse transcriptase-PCR (qRT-PCR) revealed that Tcal/Tcal mice had increased expression of Galnt3 and Fgf23 in bone, but that renal expression of Klotho, 25-hydroxyvitamin D-1α-hydroxylase (Cyp27b1), and the sodium-phosphate co-transporters type-IIa and -IIc was similar to that in wild-type mice. Thus, TCAL mice have the phenotypic features of FTC and HHS, and provide a model for these disorders of phosphate metabolism. © 2012 Esapa et al.
Resumo:
The intervertebral disc (IVD) is a unique soft tissue structure which provides structural support and flexibility in the axial skeleton of vertebrates. From a structural perspective, the disc behaves somewhat like a thick walled pressure vessel, where the walls are comprised of a series of composite annular rings (lamellae). However, a prior study (Marchand and Ahmed, 1990) found a high proportion of circumferentially discontinuous lamellae in human lumbar IVDs. The presence of these discontinuities raises important structural questions, because discontinuous lamellae cannot withstand high nucleus pressures via the generation of circumferential (hoop) stress. A possible alternative mechanism may be that inter-lamellar cohesion allows shear stress transfer between adjacent annular layers. The aim of the present study was therefore to investigate the importance of inter-lamellar shear resistance in the intervertebral disc. This work found that inter-lamellar shear resistance has a strong influence on the compressive stiffness of the intervertebral disc, with a change in interface condition from tied (no slip) to frictionless (no shear resistance) reducing disc compressive stiffness by 40%. However, it appears that substantial inter-lamellar shear resistance is present in the bovine tail disc. Decreases in inter-lamellar shear resistance due to degradation of bridging collagenous or elastic fibre structures could therefore be an important part of the process of disc degeneration.
Resumo:
INTRODUCTION Cadaveric studies have previously documented typical patterns of venous drainage within vertebral bodies (VBs) [1,2,3], comprised primarily of the basivertebral vein, a planar tree like structure at the mid-height of the VB. These studies, however, are limited in the number of samples available, and so have not examined any potential differences in this anatomy in conditions such as scoliosis. MRI is able to create 3D images of soft tissue structures in the spine, including the basivertebral vein without the use of contrast. As a non-invasive imaging technique this opens up the possibility of examining the venous network in multiple VBs within the same subject, in healthy controls as well as in subjects with abnormal anatomy such as adolescent idiopathic scoliosis (AIS). CONCLUSIONS High resolution MRI scans allow in vivo quantification of the vertebral venous system at multiple levels on healthy and scoliotic populations for the first time. The length of the basivertebral vein was seen to have a significant bias to the right hand side of the VB in both healthy and AIS adolescents. The spatial pattern of this vein showed large variations in branching both within and across individuals.