908 resultados para soft proofing
Resumo:
Experimental observations of the time-dependent mechanical responses of collagenous tissues have demonstrated behavior that deviates from standard treatments of linear or quasi-linear viscoelasticity. In particular, time-dependent deformation can be strongly coupled to strain level, and strain-rate independence can be observed under monotonic loading, even for a tissue with dramatic stress relaxation. It was postulated that this nonlinearity is fundamentally associated with gradual recruitment of individual collagen fibrils during applied mechanical loading. Based on previously observed experimental results for the time-dependent response of collagenous soft tissues, a model is developed to describe the mechanical behavior of these tissues under uniaxial loading. Tissue stresses, under applied strain-controlled loading, are assumed to be a sum of elastic and viscoelastic stress contributions. The relative contributions of elastic and viscoelastic stresses is assumed to vary with strain level, leading to strain- and time-dependent mechanical behavior. The model formulation is examined under conditions of monotonic loading at varying constant strain rates and stress-relaxation at different applied strain levels. The model is compared with experimental data for a membranous biological soft tissue, the amniotic sac, and is found to agree well with experimental results. The limiting behavior of the novel model, at large strains relative to the collagen recruitment, is consistent with the quasi-linear viscoelastic approach. © 2006 Materials Research Society.
Resumo:
In this paper the soft turn-on of NPT IGBT under Active Voltage Control (AVC) is presented. The AVC technique is able to control the IGBT switching trajectory according to a pre-defined reference signal generated by a FPGA chip. By applying a special designed reference signal at turn-on, the IGBT turn-on current overshoot and diode recovery can be optimized. Experiments of soft turn-on with different reference signal are presented in this paper. This technique can be used to reduce the switching stress on the device and on other components of the circuit. © 2011 IEEE.
Resumo:
The Fort Canning Tunnel is the first road tunnel in Singapore to be built using the sprayed concrete lining (SCL) method. The major technical challenge of this was to construct a 15m wide tunnel by mining in soft ground under a shallow overburden of 3m to 9m. This paper describes the geotechnical investigations and monitoring controls for the safe and progressive execution of the works, such as soil investigations, trial forepoling works, surface settlement monitoring, tunnel settlement monitoring, face movement monitoring, and the observational approach to construction. The monitored field data showed the volume loss to range from 0.4% to 2.1%, and the observed surface settlement trough was found to agree well with the theoretical Gaussian trough. Other observations made include substantial surface settlements induced by the stress relief at and ahead of the tunnel face in spite of the forepoling umbrella, and the higher volume losses associated with higher overburden. Tunnel face movements were observed during installation of forepoling. These observations are of interest to engineers planning future SCL tunnels in similar conditions.
Resumo:
In this study, in order to assess the ecological health status and zoning of soft bottom of Gorgan Bay, the spatial and temporal distribution of macrofauna and their relationship with environmental stress were investigated. Sediment samples were collected using a Van Veen grab at 22 sampling points, seasonally during 2012-2013. The averages (±SD) of the percentages of sand, silt, clay and TOM (Total Organic Matter) in the sediment samples were determined (44.4± 15, 53.4 ± 14, and 2.2 ±2.2 and 7.2% ± 1.6, respectively). Our results showed that mean (range) of Al, As, Cu, Fe, Ni, Pb and Zn in the sediment samples were 1.2 % (0.4-2.1), 4.8 (2.5- 10.3) ppm, 10.5 (4.4-16.9) ppm, 1 (0.4 – 1.6) % , 13.6 (6.2-21.5) ppm, 9.1 (4.7-12.9) ppm and 23.9 (3.1-39.4) ppm, respectively. In spring, both Al and Ni were higher than the guideline level. In the event that arsenic was exceeds the guidelines in summer. In this study, 14 species of macrofauna from 12 families were identified. Polychaeta with 3 species was the most dominant group in terms of abundance. The four most abundant taxa making up 85% of all specimens (Streblospio gynobranchiata, Tubificidae, Hediste versicolor and Abra segmentum). The western area were characterized by the higher species diversity (H', 1.94). So Gorgan Bay presents transitional macrobenthic assemblages that are spatially distributed along substrate gradients .The mean of Shannon index, BENTIX, BO2A, AMBI and M-AMBI in the bay was 1.3, 2.2, 0.4, 3.2 and 0.65 respectively. According to the results of these indices, ecological status of the western part of the bay assessed better than the other parts. According to the results of the nmMDS (non-metric Multidimensional Scaling), PCA (Principal Components Analysis), the map of distribution of heavy metals and the map of the ecological status , it seems Gorgan Bay is divided into two separate zones (the eastern and the western parts).M-AMBI finaly introduced reliable index for assessing the ecological status of the Bay.
Resumo:
PDMS based imprinting is firstly developed for patterning of rGO on a large area. High quality stripe and square shaped rGO patterns are obtained and the electrical properties of the rGO film can be adjusted by the concentration of GO suspension. The arrays of rGO electronics are fabricated from the patterned film by a simple shadow mask method. Gas sensors, which are based on these rGO electronics, show high sensitivity and recyclable usage in sensing NH 3. © 2012 The Royal Society of Chemistry.
Resumo:
In recent years, the presence of crusts within near surface sediments found in deep water locations off the west coast of Angola has been of interest to hot-oil pipeline designers. The origin for these crusts is considered to be of biological origin, based on the observation of thousands of faecal pellets in natural crust core samples. This paper presents the results of laboratory tests undertaken on natural and faecal pellet-only samples. These tests investigate the role faecal pellets play in modifying the gemechanical behaviour of clayey sediments. It is found that faecal pellets are able to significantly alter both the strength and the average grain-size of natural sediments, and therefore, influence the permeability and stiffness. Hot-oil pipelines self-embed into and subsequent shear on crusts containing faecal pellets. Being able to predict the time required for installed pipelines to consolidate the underlying sediment and thus, how soon after pipe-laying, the interface strength will develop is of great interest to pipeline designers. It is concluded from wet-sieving samples before and after oedometer tests, that the process of pipe laying is unlikely to destroy pellets. They will therefore, be a major constituent of the sediment subject to soil-pipeline shearing behaviour during axial pipe-walking and lateral buckling. Based on the presented results, a discussion highlighting the key implications for pipeline design is therefore provided. Copyright © 2011 by ASME.
Resumo:
This paper provides a case study on the deepest excavation carried out so far in the construction of the metro network in Shanghai, which typically features soft ground. The excavation is 38 m deep with retaining walls 65 m deep braced by 9 levels of concrete props. To obtain a quick and rough prediction, two centrifuge model tests were conducted, in which one is for the 'standard' section with green field surrounding and the other with an adjacent piled building. The tests were carried out in a run-stop-excavation-run style, in which excavation was conducted manually. By analyzing the lateral wall displacement, ground deformation, bending moment and earth pressure, the test results are shown to be reasonably convincing and the design and construction were validated. Such industry orientated centrifuge modeling was shown to be useful in understanding the performance of geotechnical processes, especially when engineers lack relevant field experience. © 2010 Taylor & Francis Group, London.
Resumo:
The seismic design for offshore foundations is based predominantly on experience onshore. This paper describes the results of dynamic centrifuge tests performed to validate the performance of a suction caisson installed in normally consolidated clay. The main objective is to evaluate the likely plastic displacement under different shaking levels. Permanent displacement results indicate that the displacements experienced are well within the allowable movement for the foundation considered, even though a strength based design approach would consider this to be a failure. Larger earthquakes are seen to produce comparatively smaller displacements. It is concluded that the when designing for seismic loading, if some displacement is permissible then a performance-based approach allowing some displacement proves significantly less conservative than a purely strength-based design. It is also concluded that dynamic response analyses should consider the strength of soil, as this can act as a fuse against large amplitude shear waves. © 2011 Taylor & Francis Group, London.
Resumo:
The dynamic response of end-clamped monolithic beams and sandwich beams of equal areal mass have been measured by loading the beams at mid-span with metal foam projectiles to simulate localised blast loading. The sandwich beams were made from carbon fibre laminate and comprised identical face sheets and a square-honeycomb core. The transient deflection of the beams was determined as a function of projectile momentum, and the measured response was compared with finite element simulations based upon a damage mechanics approach. A range of failure modes were observed in the sandwich beams including core fracture, plug-type shear failure of the core, debonding of the face sheets from the core and tensile tearing of the face sheets at the supports. In contrast, the monolithic beams failed by a combination of delamination of the plies and tensile failure at the supports. The finite element simulations of the beam response were accurate provided the carbon fibre properties were endowed with rate sensitivity of damage growth. The relative performance of monolithic and sandwich beams were quantified by the maximum transverse deflection at mid-span for a given projectile momentum. It was found that the sandwich beams outperformed both monolithic composite beams and steel sandwich beams with a square-honeycomb core. However, the composite beams failed catastrophically at a lower projectile impulse than the steel beams due to the lower ductility of the composite material. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
We have extended our previous work (Rawlings et al 2010 Phys. Rev. B 82 085404) on simulating magnetic force microscopy (MFM) images for magnetically soft samples to include an accurate representation of coated MFM tips. We used an array of square 500 nm nanomagnets to evaluate our improved MFM model. A quantitative comparison between model and experiment was performed for lift heights ranging from 20 to 100 nm. No fitting parameters were used in our comparison. For all lift heights the qualitative agreement between model and experiment was significantly improved. At low lift heights, where the magnetic signal was strong, the difference between theory and experiment was less than 30%.
Resumo:
To maximize the utility of high land cost in urban development, underground space is commonly exploited, both to reduce the load acting on the ground and to increase the space available. The execution of underground constructions requires the use of appropriate retaining wall and bracing systems. Inadequate support systems have always been a major concern, as any excessive ground movement induced during excavation could cause damage to neighboring structures, resulting in delays, disputes and cost overruns. Experimental findings on the effect of wall stiffness, depth of the stiff stratum away from the wall toe and wall toe fixity condition are presented and discussed. © 2012 Taylor & Francis Group.