914 resultados para site-specific mutagenesis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mutational analysis based on the pharmacological differences between mammalian and amphibian angiotensin II receptors (AT receptors) previously identified 7 aa residues located in transmembrane domains (TMs) III (Val-108), IV (Ala-163), V (Pro-192, Thr-198), VI (Ser-252), and VII (Leu-300, Phe-301) of the rat AT receptor type 1b (rAT1b receptor) that significantly influenced binding of the nonpeptide antagonist Losartan. Further studies have shown that an additional 6 residues in the rAT1b receptor TMs II (Ala-73), III (Ser-109, Ala-114, Ser-115), VI (Phe-248), and VII (Asn-295) are important in Losartan binding. The 13 residues required for Losartan binding in the mammalian receptor were exchanged for the corresponding amino acids in the Xenopus AT receptor type a (xATa receptor) to generate a mutant amphibian receptor that bound Losartan with the same affinity as the rAT1b receptor (Losartan IC50 values: rAT1b, 2.2 +/- 0.2 nM: xATa, > 50 microM; mutant, 2.0 +/- 0.1 nM). To our knowledge, this is the first report of a gain-of-function mutant in which the residues crucial to formation of a ligand binding site in a mammalian peptide hormone receptor were transferred to a previously unresponsive receptor by site-directed mutagenesis. Ala substitutions and comparison of mammalian and amphibian combinatorial mutants indicated that TM III in the rAT1b receptor plays a key role in Losartan binding. Identification of residues involved in nonpeptide ligand binding will facilitate studies aimed at elucidating the chemical basis for ligand recognition in the AT receptor and peptide hormone receptors in general.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Leishmaniavirus (LRV) is a double-stranded RNA virus that persistently infects the protozoan parasite Leishmania. LRV produces a short RNA transcript, corresponding to the 5' end of positive-sense viral RNA, both in vivo and in in vitro polymerase assays. The short transcript is generated by a single site-specific cleavage event in the 5' untranslated region of the 5.3-kb genome. This cleavage event can be reproduced in vitro with purified viral particles and a substrate RNA transcript possessing the viral cleavage site. A region of nucleotides required for cleavage was identified by analyzing the cleavage sites yielding the short transcripts of various LRV isolates. A 6-nt deletion at this cleavage site completely abolished RNA processing. In an in vitro cleavage assay, baculovirus-expressed capsid protein possessed an endonuclease activity identical to that of native virions, showing that the viral capsid protein is the RNA endonuclease. Identification of the LRV capsid protein as an RNA endonuclease is unprecedented among known viral capsid proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Leukotriene A4 (LTA4) hydrolase [7E,9E,11Z,14Z)-(5S,6S)-5,6-epoxyicosa-7,9 ,11,14-tetraenoate hydrolase; EC 3.3.2.6] is a bifunctional zinc metalloenzyme which converts LTA4 into the chemotactic agent leukotriene B4 (LTB4). Suicide inactivation, a typical feature of LTA4 hydrolase/aminopeptidase, occurs via an irreversible, apparently mechanism-based, covalent binding of LTA4 to the protein in a 1:1 stoichiometry. Differential lysine-specific peptide mapping of unmodified and suicide-inactivated LTA4 hydrolase has been used to identify a henicosapeptide, encompassing the amino acid residues 365-385 of human LTA4 hydrolase, which is involved in the binding of LTA4, LTA4 methyl ester, and LTA4 ethyl ester to the native enzyme. A modified form of this peptide, generated by lysine-specific digestion of LTA4 hydrolase inactivated by LTA4 ethyl ester, could be isolated for complete Edman degradation. The sequence analysis revealed a gap at position 14, which shows that binding of the leukotriene epoxide had occurred via Tyr-378 in LTA4 hydrolase. Inactivation of the epoxide hydrolase and the aminopeptidase activity was accompanied by a proportionate modification of the peptide. Furthermore, both enzyme inactivation and peptide modification could be prevented by preincubation of LTA4 hydrolase with the competitive inhibitor bestatin, which demonstrates that the henicosapeptide contains functional elements of the active site(s). It may now be possible to clarify the molecular mechanisms underlying suicide inactivation and epoxide hydrolysis by site-directed mutagenesis combined with structural analysis of the lipid molecule, covalently bound to the peptide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Escherichia coli RuvC protein is a specific endonuclease that resolves Holliday junctions during homologous recombination. Since the endonucleolytic activity of RuvC requires a divalent cation and since 3 or 4 acidic residues constitute the catalytic centers of several nucleases that require a divalent cation for the catalytic activity, we examined whether any of the acidic residues of RuvC were required for the nucleolytic activity. By site-directed mutagenesis, we constructed a series of ruvC mutant genes with similar amino acid replacements in 1 of the 13 acidic residues. Among them, the mutant genes with an alteration at Asp-7, Glu-66, Asp-138, or Asp-141 could not complement UV sensitivity of a ruvC deletion strain, and the multicopy mutant genes showed a dominant negative phenotype when introduced into a wild-type strain. The products of these mutant genes were purified and their biochemical properties were studied. All of them retained the ability to form a dimer and to bind specifically to a synthetic Holliday junction. However, they showed no, or extremely reduced, endonuclease activity specific for the junction. These 4 acidic residues, which are dispersed in the primary sequence, are located in close proximity at the bottom of the putative DNA binding cleft in the three-dimensional structure. From these results, we propose that these 4 acidic residues constitute the catalytic center for the Holliday junction resolvase and that some of them play a role in coordinating a divalent metal ion in the active center.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fragile X syndrome (FXS) is the most common form of inherited mental retardation in humans. FXS is caused by loss of the Fragile X Mental Retardation Protein (FMRP), an important regulator of neuronal mRNA translation. Patients with FXS display cognitive deficits including memory problems. Protein synthesis-dependent long-term changes in synaptic plasticity are involved in the establishment and maintenance of long-term memory. One prevalent theory of FXS pathology predicts that FMRP is required to negatively regulate the translation of important mRNAs at the synapse. We are investigating microRNAs (miRNAs) as a potential regulator of synaptic FMRP-regulated mRNAs that have previously been described as being crucial to the process of synaptic plasticity. The general hypothesis underlying this thesis is that FMRP may negatively regulate the expression of futsch (the Drosophila homologue of the microtubule-associated protein gene MAP1B) via the miRNA pathway. The first step we took in testing this hypothesis was to confirm that futsch is subject to miRNA-mediated translational control. Using in silico target analysis, we predicted that several neuronally expressed miRNAs target the futsch mRNA 3'UTR and repress expression of Futsch protein. Then, using an in vitro luciferase reporter system, we showed that miR-315 and members of the miR-9 family selectively down-regulated futsch reporter translation. We have confirmed by site- directed mutagenesis that the miRNA interaction with the futsch 3'UTR is specific to the miRNA seed region binding site. Interestingly, reduction of FMRP levels by RNAi had no effect on futsch 3'UTR reporter expression. Together, these data suggest regulation of futsch expression by the miRNA pathway might be independent of FMRP activity. However, additional experiments need to be completed to confirm these preliminary results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sulfate (SO42-) is required for bone/cartilage formation and cellular metabolism. sat-1 is a SO42- anion transporter expressed on basolateral membranes of renal proximal tubules, and is suggested to play an important role in maintaining SO42- homeostasis. As a first step towards studying its tissue-specific expression, hormonal regulation, and in preparation for the generation of knockout mice, we have cloned and characterized the mouse sat-1 cDNA (msat-1), gene (sat1; Slc26a1) and promoter region. msat-1 encodes a 704 amino acid protein (75.4 kDa) with 12 putative transmembrane domains that induce SO42- (also oxalate and chloride) transport in Xenopus oocytes. msat-1 mRNA was expressed in kidney, liver, cecum, calvaria, brain, heart, and skeletal muscle. Two distinct transcripts were expressed in kidney and liver due to alternative utilization of the first intron, corresponding to an internal portion of the 5'-untranslated region. The Sa1 gene (similar to6 kb) consists of 4 exons. Its promoter is similar to52% G+C rich and contains a number of well-characterized cis-acting elements, including sequences resembling hormone responsive elements T3REs and VDREs. We demonstrate that Sat1 promoter driven basal transcription in OK cells was stimulated by tri-iodothyronine. Site-directed mutagenesis identified an imperfect T3RE at -454-bp in the Sat1 promoter to be responsible for this activity. This study represents the first characterization of the structure and regulation of the Sat1 gene encoding a SO42-/chloride/oxalate anion transporter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) is central to its function, with the most common mutation, DeltaF508, resulting in abnormal processing and trafficking. Therefore, there is a significant need to develop tools, which enable the trafficking of CFTR to be studied in vitro and in vivo. In previous studies it has been demonstrated that fusion of the green fluorescent protein (GFP) to the N-terminus of CFTR does lead to functional expression of CFTR chloride channels in epithelial cell lines. The aim of the present study was to examine whether it is possible to express GFP-tagged CFTR as a transgene in colonic and airway epithelial cells of cystic fibrosis (CF) mice and to correct the CF defect. Using the epithelial-specific human cytokeratin promoter K18, we generated bitransgenic mice cftr(G551D/G551D) K18-GFP-CFTR+/-, designated GFP mice. Transcripts for GFP-CFTR could be detected in bitransgenic mice by use of RT-PCR techniques. Expression of GFP-CFTR protein was detected specifically in the colonic epithelium by both direct GFP fluorescence and the use of an anti-GFP antibody. Ussing chamber studies showed that the ion transport defect in colon and airways observed in cftr(G551D/G551D) mice was partially corrected in the bitransgenic animals. Thus, K18-GFP-CFTR is functionally expressed in transgenic mice, which will be a valuable tool in studies on CFTR synthesis, processing and ion transport in native epithelial tissues.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human SULT1A1 is primarily responsible for sulfonation of xenobiotics, including the activation of promutagens, and it has been implicated in several forms of cancer. Human SULT1A3 has been shown to be the major sulfotransferase that sulfonates dopamine. These two enzymes shares 93% amino acid sequence identity and have distinct but overlapping substrate preferences. The resolution of the crystal structures of these two enzymes has enabled us to elucidate the mechanisms controlling their substrate preferences and inhibition. The presence of two p-nitrophenol (pNP) molecules in the crystal structure of SULT1A1 was postulated to explain cooperativity at low and inhibition at high substrate concentrations, respectively. In SULT1A1, substrate inhibition occurs with pNP as the substrate but not with dopamine. For SULT1A3, substrate inhibition is found for dopamine but not with pNP. We investigated how substrate inhibition occurs in these two enzymes using molecular modeling, site-directed mutagenesis, and kinetic analysis. The results show that residue Phe-247 of SULT1A1, which interacts with both p-nitrophenol molecules in the active site, is important for substrate inhibition. Mutation of phenylalanine to leucine at this position in SULT1A1 results in substrate inhibition by dopamine. We also propose, based on modeling and kinetic studies, that substrate inhibition by dopamine in SULT1A3 is caused by binding of two dopamine molecules in the active site. © 2004 by The American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Failure to express soluble proteins in bacteria is mainly attributed to the properties of the target protein itself, as well as the choice of the vector, the purification tag and the linker between the tag and protein, and codon usage. The expression of proteins with fusion tags to facilitate subsequent purification steps is a widely used procedure in the production of recombinant proteins. However, the additional residues can affect the properties of the protein; therefore, it is often desirable to remove the tag after purification. This is usually done by engineering a cleavage site between the tag and the encoded protein that is recognised by a site-specific protease, such as the one from tobacco etch virus (TEV). In this study, we investigated the effect of four different tags on the bacterial expression and solubility of nine mouse proteins. Two of the four engineered constructs contained hexahistidine tags with either a long or short linker. The other two constructs contained a TEV cleavage site engineered into the linker region. Our data show that inclusion of the TEV recognition site directly downstream of the recombination site of the Invitrogen Gateway vector resulted, in a loss of solubility of the nine mouse proteins. Our work suggests that one needs to be very careful when making modifications to expression vectors and combining different affinity and fusion tags and cleavage sites: (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Receptor activity modifying proteins (RAMPs) are a family of single-pass transmembrane proteins that dimerize with G-protein-coupled receptors. They may alter the ligand recognition properties of the receptors (particularly for the calcitonin receptor-like receptor, CLR). Very little structural information is available about RAMPs. Here, an ab initio model has been generated for the extracellular domain of RAMP1. The disulfide bond arrangement (Cys 27-Cys82, Cys40-Cys72, and Cys 57-Cys104) was determined by site-directed mutagenesis. The secondary structure (a-helices from residues 29-51, 60-80, and 87-100) was established from a consensus of predictive routines. Using these constraints, an assemblage of 25,000 structures was constructed and these were ranked using an all-atom statistical potential. The best 1000 conformations were energy minimized. The lowest scoring model was refined by molecular dynamics simulation. To validate our strategy, the same methods were applied to three proteins of known structure; PDB:1HP8, PDB:1V54 chain H (residues 21-85), and PDB:1T0P. When compared to the crystal structures, the models had root mean-square deviations of 3.8 Å, 4.1 Å, and 4.0 Å, respectively. The model of RAMP1 suggested that Phe93, Tyr 100, and Phe101 form a binding interface for CLR, whereas Trp74 and Phe92 may interact with ligands that bind to the CLR/RAMP1 heterodimer. © 2006 by the Biophysical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Liver fibrosis and its end-stage disease cirrhosis are a main cause of mortality and morbidity worldwide. Thus far, there is no efficient pharmaceutical intervention for the treatment of liver fibrosis. Liver fibrosis is characterized by excessive accumulation of the extracellular matrix (ECM) proteins. Transglutaminase (TG)-mediated covalent cross-linking has been implicated in the stabilization and accumulation of ECM in a number of fibrotic diseases. Thus, the use of tissue TG2 inhibitors has potential in the treatment of liver fibrosis. Recently, we introduced a novel group of site-directed irreversible specific inhibitors of TGs. Here, we describe the development of a liposome-based drug-delivery system for the site-specific delivery of these TG inhibitors into the liver. By using anionic or neutral-based DSPC liposomes, the TG inhibitor can be successfully incorporated into these liposomes and delivered specifically to the liver. Liposomes can therefore be used as a potential carrier system for site-specific delivery of the TG2 inhibitors into the liver, opening up a potential new avenue for the treatment of liver fibrosis and its end-stage disease cirrhosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Data suggest that for TG2 to be secreted, an intact N-terminal FN binding site (for which TG2 has high affinity) is required, however interaction of TG2 with its high affinity binding partners presents both in the intracellular and extracellular space as well as with specific cell surface receptors may also be involved in this process. Using a site-directed mutagenesis approach, the effects of specific mutations of TG2 on its translocation to the cell surface and secretion into the ECM have been investigated. Mutations include those affecting FN binding (FN1), HSPGs binding (HS1, HS2) GTP/GDP binding site (GTP1, 2) as well as N-terminal and C-terminal domains (TG2 deletion mutants N, and C). By performing transglutaminase activity assays, cell surface protein biotinylation and verifying distribution of TG2 mutants in the ECM we demonstrated that one of the potential heparan sulfate binding site mutants (HS2 mutant) is secreted at the cell surface in a much reduced manner and is less deposited into the ECM than the HS1 mutant. The HS2 mutant showed a low affinity for binding to a heparin sepharose column demonstrating this mutation site may be a potential heparan binding site of TG2. Analogous peptides to this site were shown to have some efficiency in the inhibition of the binding of the FN-TG2 complex to cell surface heparan sulfates in a cell adhesion assay indicating the peptide to be representative of the novel heparin binding site within TG2. The GTP binding site mutants GTP1 and GTP2 exhibited low specific activity however, GTP2 showed more secretion to the cell surface in comparison to GTP1. The FN1 binding mutant did not greatly affect TG2 activity nor did it alter TG2 secretion at the cell surface and deposition into the ECM indicating that fibronectin binding at this site on the enzyme is not an important factor. Interestingly an intact N-terminus (?1-15) appeared to be essential for enzyme externalisation. Removal of the first 15 amino acids (N-terminal mutant) abolished TG2 secretion to the cell surface as well as deposition into the ECM. In addition it reduced the enzymes affinity for binding to heparin. In contrast, deletion of the C-terminal TG2 domain (?594-687) increased enzyme secretion to the cell surface. Consistent with the data presented in this thesis we speculate that TG2 must fulfill two requirements to be successfully secreted from cells. The findings indicate that the closed conformation of the enzyme as well as intact N-terminal tail and a novel HS binding site within the TG2 molecule are key elements for the enzyme’s localisation at the cell surface and its deposition into the extracellular matrix. The importance of understanding the interactions between TG2, heparan sulfates and other TG2 binding partners at the cell surface could have an impact on the design of novel strategies for enzyme inhibition which could be important in the control of extracellular TG2 related diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modelling class B G-protein-coupled receptors (GPCRs) using class A GPCR structural templates is difficult due to lack of homology. The plant GPCR, GCR1, has homology to both class A and class B GPCRs. We have used this to generate a class A-class B alignment, and by incorporating maximum lagged correlation of entropy and hydrophobicity into a consensus score, we have been able to align receptor transmembrane regions. We have applied this analysis to generate active and inactive homology models of the class B calcitonin gene-related peptide (CGRP) receptor, and have supported it with site-directed mutagenesis data using 122 CGRP receptor residues and 144 published mutagenesis results on other class B GPCRs. The variation of sequence variability with structure, the analysis of polarity violations, the alignment of group-conserved residues and the mutagenesis results at 27 key positions were particularly informative in distinguishing between the proposed and plausible alternative alignments. Furthermore, we have been able to associate the key molecular features of the class B GPCR signalling machinery with their class A counterparts for the first time. These include the [K/R]KLH motif in intracellular loop 1, [I/L]xxxL and KxxK at the intracellular end of TM5 and TM6, the NPXXY/VAVLY motif on TM7 and small group-conserved residues in TM1, TM2, TM3 and TM7. The equivalent of the class A DRY motif is proposed to involve Arg(2.39), His(2.43) and Glu(3.46), which makes a polar lock with T(6.37). These alignments and models provide useful tools for understanding class B GPCR function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The calcitonin gene-related peptide (CGRP) receptor is an unusual G protein-coupled receptor (GPCR) in that it comprises the calcitonin receptor-like receptor (CLR), receptor activity modifying protein 1 (RAMP1) and the receptor component protein (RCP). The RAMP1 has two other homologues – RAMP2 and RAMP3. The endogenous ligand for this receptor is CGRP, a 37 amino acid neuropeptide that act as a vasodilator. This peptide has been implicated in the aetiology of health conditions such as inflammation, Reynaud’s disease and migraine. A clear understanding of the mode of activation of this receptor could be key in developing therapeutic agents for associated health conditions. Although the crystal structure of the N-terminal extracellular domain (ECD) of this receptor (in complex with an antagonist) has been published, the details of receptor-agonist interactions at this domain, and so ultimately the mechanism of receptor activation, are still unclear. Also, the C-terminus of the CLR (in the CGRP receptor), especially around the presumed helix 8 (H8) region, has not been well studied for its role in receptor signalling. This research project investigated these questions. In this study, certain residues making up the putative N-terminal ligand-binding core of the CLR (in the CGRP receptor) were mapped out and found to be crucial for receptor signalling. They included W69 and D70 of the WDG motif in family B GPCRs, as well as Y91, F92, D94 and F95 in loop 2 of CLR N-terminus. Also, F163 at the cytoplasmic end of TM1 and certain residues spanning H8 and associated C-terminal region of CLR were found to be required for CGRP receptor signalling. These residues were investigated by site-directed mutagenesis where they were mutated to alanine (or other residues in specific cases) and the effect of the mutations on receptor pharmacology assessed by evaluating cAMP production, cell surface expression, total cell expression and aCGRP-mediated receptor internalization. Moreover, the N-terminal ECDs of the CLR and RAMPs (RAMP1, RAMP2 and RAMP3) were produced in a yeast host strain (Pichia pastoris) for the purpose of structural interaction study by surface plasmon resonance (SPR). Following expression and purification, these receptor proteins were found to individually retain their secondary structures when analysed by circular dichroism (CD). Results were analysed and interpreted with the knowledge of the secretin family receptor paradigm. The research described in this thesis has produced novel data that contributes to a clearer understanding of CGRP receptor pharmacology. The study on CLR and RAMPs ECDs could be a useful tool in determining novel interacting GPCR partners of RAMPs.