939 resultados para shearing interference
Resumo:
Using an experimentally based, computer-presented task, this study assessed cognitive inhibition and interference in individuals from the dissociative identity disorder (DID; n=12), generalized anxiety disorder (GAD; n=12) and non-clinical (n=12) populations. Participants were assessed in a neutral and emotionally negative (anxiety provoking) context, manipulated by experimental instructions and word stimuli. The DID sample displayed effective cognitive inhibition in the neutral but not the anxious context. The GAD sample displayed the opposite findings. However, the interaction between group and context failed to reach significance. There was no indication of an attentional bias to non-schema specific negative words in any sample. Results are discussed in terms of the potential benefit of weakened cognitive inhibition during anxious arousal in dissociative individuals.
Resumo:
We suggest a theoretical scheme for the simulation of quantum random walks on a line using beam splitters, phase shifters, and photodetectors. Our model enables us to simulate a quantum random walk using of the wave nature of classical light fields. Furthermore, the proposed setup allows the analysis of the effects of decoherence. The transition from a pure mean-photon-number distribution to a classical one is studied varying the decoherence parameters.
Resumo:
A variety of genes expressed in preparasitic second-stage juveniles (J2) of plant-parasitic nematodes appear to be vulnerable to RNA interference (RNAi) in vitro by coupling double-stranded (ds)RNA soaking with the artificial stimulation of pharyngeal pumping. Also, there is mounting evidence that the in planta generation of nematode-specific double-stranded RNAs (dsRNAs) has real utility in the control of these pests. Although neuronally-expressed genes in Caenorhabditis elegans are commonly refractory to RNAi, we have discovered that neuronally-expressed genes in plant-parasitic nematodes are highly susceptible to RNAi and that silencing can be induced by simple soaking procedures without the need for pharyngeal stimulation. Since most front-line anthelmintics that are used for the control of nematode parasites of animals and humans act to disrupt neuromuscular coordination, we argue that intercellular signalling processes associated with neurons have much appeal as targets for transgenic plant-based control strategies for plant-parasitic nematodes. FMRFamide-like peptides (FLPs) are a large family of neuropeptides which are intimately associated with neuromuscular regulation, and our studies on flp gene function in plant-parasitic nematodes have revealed that their expression is central to coordinated locomotory activities. We propose that the high level of conservation in nervous systems across nematodes coupled with the RNAi-susceptibility of neuronally-expressed genes in plant-parasitic nematodes provides a valuable research tool which could be used to interrogate neuronal signalling processes in nematodes.
Resumo:
An isometric torque-production task was used to investigate interference and retention in adaptation to multiple visuomotor environments. Subjects produced isometric flexion-extension and pronation-supination elbow torques to move a cursor to acquire targets as quickly as possible. Adaptation to a 30 degrees counter-clockwise (CCW) rotation (task A), was followed by a period of rest (control), trials with no rotation (task B0), or trials with a 60 degrees clockwise (CW) rotation (task B60). For all groups, retention of task A was assessed 5 h later. With initial training, all groups reduced the angular deviation of cursor paths early in the movements, indicating feedforward adaptation. For the control group, performance at commencement of the retest was significantly better than that at the beginning of the initial learning. For the B0 group, performance in the retest of task A was not dissimilar to that at the start of the initial learning, while for the B60 group retest performance in task A was markedly worse than initially observed. Our results indicate that close juxtaposition of two visuomotor environments precludes improved retest performance in the initial environment. Data for the B60 group, specifically larger angular errors upon retest compared with initial exposures, are consistent with the presence of anterograde interference. Furthermore, full interference occurred even when the visuomotor environment encountered in the second task was not rotated (B0). This latter novel result differs from those obtained for force field learning, where interference does not occur when task B does not impose perturbing forces, i.e., when B consists of a null field (Brashers-Krug et al., Nature 382:252-255, 1996). The results are consistent with recent proposals suggesting different interference mechanisms for visuomotor (kinematic) compared to force field (dynamic) adaptations, and have implications for the use of washout trials when studying interference between multiple visuomotor environments.