887 resultados para sentiment burst
Resumo:
Sentiment analysis on Twitter has attracted much attention recently due to its wide applications in both, commercial and public sectors. In this paper we present SentiCircles, a lexicon-based approach for sentiment analysis on Twitter. Different from typical lexicon-based approaches, which offer a fixed and static prior sentiment polarities of words regardless of their context, SentiCircles takes into account the co-occurrence patterns of words in different contexts in tweets to capture their semantics and update their pre-assigned strength and polarity in sentiment lexicons accordingly. Our approach allows for the detection of sentiment at both entity-level and tweet-level. We evaluate our proposed approach on three Twitter datasets using three different sentiment lexicons to derive word prior sentiments. Results show that our approach significantly outperforms the baselines in accuracy and F-measure for entity-level subjectivity (neutral vs. polar) and polarity (positive vs. negative) detections. For tweet-level sentiment detection, our approach performs better than the state-of-the-art SentiStrength by 4-5% in accuracy in two datasets, but falls marginally behind by 1% in F-measure in the third dataset.
Resumo:
Sentiment lexicons for sentiment analysis offer a simple, yet effective way to obtain the prior sentiment information of opinionated words in texts. However, words' sentiment orientations and strengths often change throughout various contexts in which the words appear. In this paper, we propose a lexicon adaptation approach that uses the contextual semantics of words to capture their contexts in tweet messages and update their prior sentiment orientations and/or strengths accordingly. We evaluate our approach on one state-of-the-art sentiment lexicon using three different Twitter datasets. Results show that the sentiment lexicons adapted by our approach outperform the original lexicon in accuracy and F-measure in two datasets, but give similar accuracy and slightly lower F-measure in one dataset.
Resumo:
Sentiment lexicons for sentiment analysis offer a simple, yet effective way to obtain the prior sentiment information of opinionated words in texts. However, words’ sentiment orientations and strengths often change throughout various contexts in which the words appear. In this paper, we propose a lexicon adaptation approach that uses the contextual semantics of words to capture their contexts in tweet messages and update their prior sentiment orientations and/or strengths accordingly. We evaluate our approach on one state-of-the-art sentiment lexicon using three different Twitter datasets. Results show that the sentiment lexicons adapted by our approach outperform the original lexicon in accuracy and F-measure in two datasets, but give similar accuracy and slightly lower F-measure in one dataset.
Resumo:
Most existing approaches to Twitter sentiment analysis assume that sentiment is explicitly expressed through affective words. Nevertheless, sentiment is often implicitly expressed via latent semantic relations, patterns and dependencies among words in tweets. In this paper, we propose a novel approach that automatically captures patterns of words of similar contextual semantics and sentiment in tweets. Unlike previous work on sentiment pattern extraction, our proposed approach does not rely on external and fixed sets of syntactical templates/patterns, nor requires deep analyses of the syntactic structure of sentences in tweets. We evaluate our approach with tweet- and entity-level sentiment analysis tasks by using the extracted semantic patterns as classification features in both tasks. We use 9 Twitter datasets in our evaluation and compare the performance of our patterns against 6 state-of-the-art baselines. Results show that our patterns consistently outperform all other baselines on all datasets by 2.19% at the tweet-level and 7.5% at the entity-level in average F-measure.
Resumo:
Lexicon-based approaches to Twitter sentiment analysis are gaining much popularity due to their simplicity, domain independence, and relatively good performance. These approaches rely on sentiment lexicons, where a collection of words are marked with fixed sentiment polarities. However, words' sentiment orientation (positive, neural, negative) and/or sentiment strengths could change depending on context and targeted entities. In this paper we present SentiCircle; a novel lexicon-based approach that takes into account the contextual and conceptual semantics of words when calculating their sentiment orientation and strength in Twitter. We evaluate our approach on three Twitter datasets using three different sentiment lexicons. Results show that our approach significantly outperforms two lexicon baselines. Results are competitive but inconclusive when comparing to state-of-art SentiStrength, and vary from one dataset to another. SentiCircle outperforms SentiStrength in accuracy on average, but falls marginally behind in F-measure. © 2014 Springer International Publishing.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
he push to widen participation in public consultation suggests social media as an additional mechanism through which to engage the public. Bioenergy companies need to build their capacity to communicate in these new media and to monitor the attitudes of the public and opposition organisations towards energy development projects. Design/methodology/approach This short paper outlines the planning issues bioenergy developments face and the main methods of communication used in the public consultation process in the UK. The potential role of social media in communication with stakeholders is identified. The capacity of sentiment analysis to mine opinions from social media is summarised, and illustrated using a sample of tweets containing the term ‘bioenergy’ Findings Social media have the potential to improve information flows between stakeholders and developers. Sentiment analysis is a viable Purpose The push to widen participation in public consultation suggests social media as an additional mechanism through which to engage the public. Bioenergy companies need to build their capacity to communicate in these new media and to monitor the attitudes of the public and opposition organisations towards energy development projects. Design/methodology/approach This short paper outlines the planning issues bioenergy developments face and the main methods of communication used in the public consultation process in the UK. The potential role of social media in communication with stakeholders is identified. The capacity of sentiment analysis to mine opinions from social media is summarised, and illustrated using a sample of tweets containing the term ‘bioenergy’ Findings Social media have the potential to improve information flows between stakeholders and developers. Sentiment analysis is a viable methodology, which bioenergy companies should be using to measure public opinion in the consultation process. Preliminary analysis shows promising results. Research limitations/implications Analysis is preliminary and based on a small dataset. It is intended only to illustrate the potential of sentiment analysis and not to draw general conclusions about the bioenergy sector. Originality/value Opinion mining, though established in marketing and political analysis, is not yet systematically applied as a planning consultation tool. This is a missed opportunity.
Resumo:
Sentiment classification over Twitter is usually affected by the noisy nature (abbreviations, irregular forms) of tweets data. A popular procedure to reduce the noise of textual data is to remove stopwords by using pre-compiled stopword lists or more sophisticated methods for dynamic stopword identification. However, the effectiveness of removing stopwords in the context of Twitter sentiment classification has been debated in the last few years. In this paper we investigate whether removing stopwords helps or hampers the effectiveness of Twitter sentiment classification methods. To this end, we apply six different stopword identification methods to Twitter data from six different datasets and observe how removing stopwords affects two well-known supervised sentiment classification methods. We assess the impact of removing stopwords by observing fluctuations on the level of data sparsity, the size of the classifier's feature space and its classification performance. Our results show that using pre-compiled lists of stopwords negatively impacts the performance of Twitter sentiment classification approaches. On the other hand, the dynamic generation of stopword lists, by removing those infrequent terms appearing only once in the corpus, appears to be the optimal method to maintaining a high classification performance while reducing the data sparsity and substantially shrinking the feature space
Resumo:
In this paper we propose a hybrid TCP/UDP transport, specifically for H.264/AVC encoded video, as a compromise between the delay-prone TCP and the loss-prone UDP. When implementing the hybrid approach, we argue that the playback at the receiver often need not be 100% perfect, provided that a certain level of quality is assured. Reliable TCP is used to transmit and guarantee delivery of the most important packets. This allows use of additional features in the H.264/AVC standard which simultaneously provide an enhanced playback quality, in addition to a reduction in throughput. These benefits are demonstrated through experimental results using a test-bed to emulate the hybrid proposal. We compare the proposed system with other protection methods, such as FEC, and in one case show that for the same bandwidth overhead, FEC is unable to match the performance of the hybrid system in terms of playback quality. Furthermore, we measure the delay associated with our approach, and examine its potential for use as an alternative to the conventional methods of transporting video by either TCP or UDP alone. © 2011 IEEE.
Resumo:
When required to represent a perspective that conflicts with one's own, functional magnetic resonance imaging (fMRI) suggests that the right ventrolateral prefrontal cortex (rvlPFC) supports the inhibition of that conflicting self-perspective. The present task dissociated inhibition of self-perspective from other executive control processes by contrasting belief reasoning-a cognitive state where the presence of conflicting perspectives was manipulated-with a conative desire state wherein no systematic conflict existed. Linear modeling was used to examine the effect of continuous theta burst stimulation (cTBS) to rvlPFC on participants' reaction times in belief and desire reasoning. It was anticipated that cTBS applied to rvlPFC would affect belief but not desire reasoning, by modulating activity in the Ventral Attention System (VAS). We further anticipated that this effect would be mediated by functional connectivity within this network, which was identified using resting state fMRI and an unbiased model-free approach. Simple reaction-time analysis failed to detect an effect of cTBS. However, by additionally modeling individual measures from within the stimulated network, the hypothesized effect of cTBS to belief (but, importantly, not desire) reasoning was demonstrated. Structural morphology within the stimulated region, rvlPFC, and right temporoparietal junction were demonstrated to underlie this effect. These data provide evidence that inconsistencies found with cTBS can be mediated by the composition of the functional network that is being stimulated. We suggest that the common claim that this network constitutes the VAS explains the effect of cTBS to this network on false belief reasoning. Hum Brain Mapp, 2016. © 2016 Wiley Periodicals, Inc.
Resumo:
In product reviews, it is observed that the distribution of polarity ratings over reviews written by different users or evaluated based on different products are often skewed in the real world. As such, incorporating user and product information would be helpful for the task of sentiment classification of reviews. However, existing approaches ignored the temporal nature of reviews posted by the same user or evaluated on the same product. We argue that the temporal relations of reviews might be potentially useful for learning user and product embedding and thus propose employing a sequence model to embed these temporal relations into user and product representations so as to improve the performance of document-level sentiment analysis. Specifically, we first learn a distributed representation of each review by a one-dimensional convolutional neural network. Then, taking these representations as pretrained vectors, we use a recurrent neural network with gated recurrent units to learn distributed representations of users and products. Finally, we feed the user, product and review representations into a machine learning classifier for sentiment classification. Our approach has been evaluated on three large-scale review datasets from the IMDB and Yelp. Experimental results show that: (1) sequence modeling for the purposes of distributed user and product representation learning can improve the performance of document-level sentiment classification; (2) the proposed approach achieves state-of-The-Art results on these benchmark datasets.
Resumo:
This study focuses on empirical investigations and seeks implications by utilizing three different methodologies to test various aspects of trader behavior. The first methodology utilizes Prospect Theory to determine trader behavior during periods of extreme wealth contracting periods. Secondly, a threshold model to examine the sentiment variable is formulated and thirdly a study is made of the contagion effect and trader behavior. ^ The connection between consumers' sense of financial well-being or sentiment and stock market performance has been studied at length. However, without data on actual versus experimental performance, implications based on this relationship are meaningless. The empirical agenda included examining a proprietary file of daily trader activities over a five-year period. Overall, during periods of extreme wealth altering conditions, traders "satisfice" rather than choose the "best" alternative. A trader's degree of loss aversion depends on his/her prior investment performance. A model that explains the behavior of traders during periods of turmoil is developed. Prospect Theory and the data file influenced the design of the model. ^ Additional research included testing a model that permitted the data to signal the crisis through a threshold model. The third empirical study sought to investigate the existence of contagion caused by declining global wealth effects using evidence from the mining industry in Canada. Contagion, where a financial crisis begins locally and subsequently spreads elsewhere, has been studied in terms of correlations among similar regions. The results provide support for Prospect Theory in two out of the three empirical studies. ^ The dissertation emphasizes the need for specifying precise, testable models of investors' expectations by providing tools to identify paradoxical behavior patterns. True enhancements in this field must include empirical research utilizing reliable data sources to mitigate data mining problems and allow researchers to distinguish between expectations-based and risk-based explanations of behavior. Through this type of research, it may be possible to systematically exploit "irrational" market behavior. ^
Resumo:
The most important factor that affects the decision making process in finance is the risk which is usually measured by variance (total risk) or systematic risk (beta). Since investors’ sentiment (whether she is an optimist or pessimist) plays a very important role in the choice of beta measure, any decision made for the same asset within the same time horizon will be different for different individuals. In other words, there will neither be homogeneity of beliefs nor the rational expectation prevalent in the market due to behavioral traits. This dissertation consists of three essays. In the first essay, “ Investor Sentiment and Intrinsic Stock Prices”, a new technical trading strategy was developed using a firm specific individual sentiment measure. This behavioral based trading strategy forecasts a range within which a stock price moves in a particular period and can be used for stock trading. Results indicate that sample firms trade within a range and give signals as to when to buy or sell. In the second essay, “Managerial Sentiment and the Value of the Firm”, examined the effect of managerial sentiment on the project selection process using net present value criterion and also effect of managerial sentiment on the value of firm. Final analysis reported that high sentiment and low sentiment managers obtain different values for the same firm before and after the acceptance of a project. Changes in the cost of capital, weighted cost of average capital were found due to managerial sentiment. In the last essay, “Investor Sentiment and Optimal Portfolio Selection”, analyzed how the investor sentiment affects the nature and composition of the optimal portfolio as well as the portfolio performance. Results suggested that the choice of the investor sentiment completely changes the portfolio composition, i.e., the high sentiment investor will have a completely different choice of assets in the portfolio in comparison with the low sentiment investor. The results indicated the practical application of behavioral model based technical indicator for stock trading. Additional insights developed include the valuation of firms with a behavioral component and the importance of distinguishing portfolio performance based on sentiment factors.
Resumo:
The most important factor that affects the decision making process in finance is the risk which is usually measured by variance (total risk) or systematic risk (beta). Since investors' sentiment (whether she is an optimist or pessimist) plays a very important role in the choice of beta measure, any decision made for the same asset within the same time horizon will be different for different individuals. In other words, there will neither be homogeneity of beliefs nor the rational expectation prevalent in the market due to behavioral traits. This dissertation consists of three essays. In the first essay, Investor Sentiment and Intrinsic Stock Prices, a new technical trading strategy is developed using a firm specific individual sentiment measure. This behavioral based trading strategy forecasts a range within which a stock price moves in a particular period and can be used for stock trading. Results show that sample firms trade within a range and show signals as to when to buy or sell. The second essay, Managerial Sentiment and the Value of the Firm, examines the effect of managerial sentiment on the project selection process using net present value criterion and also effect of managerial sentiment on the value of firm. Findings show that high sentiment and low sentiment managers obtain different values for the same firm before and after the acceptance of a project. The last essay, Investor Sentiment and Optimal Portfolio Selection, analyzes how the investor sentiment affects the nature and composition of the optimal portfolio as well as the performance measures. Results suggest that the choice of the investor sentiment completely changes the portfolio composition, i.e., the high sentiment investor will have a completely different choice of assets in the portfolio in comparison with the low sentiment investor. The results indicate the practical application of behavioral model based technical indicators for stock trading. Additional insights developed include the valuation of firms with a behavioral component and the importance of distinguishing portfolio performance based on sentiment factors.
Resumo:
This study focuses on empirical investigations and seeks implications by utilizing three different methodologies to test various aspects of trader behavior. The first methodology utilizes Prospect Theory to determine trader behavior during periods of extreme wealth contracting periods. Secondly, a threshold model to examine the sentiment variable is formulated and thirdly a study is made of the contagion effect and trader behavior. The connection between consumers' sense of financial well-being or sentiment and stock market performance has been studied at length. However, without data on actual versus experimental performance, implications based on this relationship are meaningless. The empirical agenda included examining a proprietary file of daily trader activities over a five-year period. Overall, during periods of extreme wealth altering conditions, traders "satisfice" rather than choose the "best" alternative. A trader's degree of loss aversion depends on his/her prior investment performance. A model that explains the behavior of traders during periods of turmoil is developed. Prospect Theory and the data file influenced the design of the model. Additional research included testing a model that permitted the data to signal the crisis through a threshold model. The third empirical study sought to investigate the existence of contagion caused by declining global wealth effects using evidence from the mining industry in Canada. Contagion, where a financial crisis begins locally and subsequently spreads elsewhere, has been studied in terms of correlations among similar regions. The results provide support for Prospect Theory in two out of the three empirical studies. The dissertation emphasizes the need for specifying precise, testable models of investors' expectations by providing tools to identify paradoxical behavior patterns. True enhancements in this field must include empirical research utilizing reliable data sources to mitigate data mining problems and allow researchers to distinguish between expectations-based and risk-based explanations of behavior. Through this type of research, it may be possible to systematically exploit "irrational" market behavior.