992 resultados para semiconduttori organici, raggi X, TIPS-pentacene
Resumo:
3d and 4d core-level XPS spectra for CePd3, a mixed-valence system, have been measured. Each spectrum exhibits two sets of structures, each corresponding to one of the valence states of cerium. Thus the usefulness of XPS, which has so far not been used extensively to investigate the mixed-valence cerium systems, is pointed out.
Resumo:
Optically clear glasses of various compositions in the system (100-x) TeO2-x(1.5K(2)O-Li2O-2.5Nb(2)O(5)) (2 <= x <= 12, in molar ratio) were prepared by the melt-quenching technique. The glassy nature of the as-quenched samples was established via differential scanning calorimetry (DSC). The amorphous and the crystalline nature of the as-quenched and heat-treated samples were confirmed by the X-ray powder diffraction and transmission electron microscopic (TEM) studies. Transparent glasses comprising potassium lithium niobate (K3Li2Nb5O15) microcrystallites on the surface and nanocrystallites within the glass were obtained by controlled heat-treatment of the as-quenched glasses just above the glass transition temperature (T-g). The optical transmission spectra of these glasses and glass-crystal composites of various compositions were recorded in the 200-2500 nm wavelength range. Various optical parameters such as optical band gap, Urbach energy, refractive index were determined. Second order optical non-linearity was established in the heat-treated samples by employing the Maker-Fringe method.
Resumo:
Salinity is an increasingly important issue in both rural and urban areas throughout much of Australia. The use of recycled/reclaimed water and other sources of poorer quality water to irrigate turf is also increasing. Hybrid Bermudagrass (Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt Davey), together with the parent species C. dactylon, are amongst the most widely used warm-season turf grass groups. Twelve hybrid Bermudagrass genotypes and one accession each of Bermudagrass (C. dactylon), African Bermudagrass (C. transvaalensis) and seashore paspalum (Paspalum vaginatum Sw.) were grown in a glasshouse experiment with six different salinity treatments applied hydroponically through the irrigation water (ECW = <0.1, 6, 12, 18, 24 or 30 dSm-1) in a flood-and-drain system. Each pot was clipped progressively at 2-weekly intervals over the 12-week experimental period to determine dry matter production; leaf firing was rated visually on 3 occasions during the last 6 weeks of salinity treatment. At the end of the experiment, dry weights of roots and crowns below clipping height were also determined. Clipping yields declined sharply after about the first 6 weeks of salinity treatment, but then remained stable at substantially lower levels of dry matter production from weeks 8 to 12. Growth data over this final 4-week experimental period is therefore a more accurate guide to the relative salinity tolerance of the 15 entries than data from the preceding 8 weeks. Based on these data, the 12 hybrid Bermudagrass genotypes showed moderate salinity tolerance, with FloraDwarfM, 'Champion Dwarf', NovotekM and 'TifEagle' ranking as the most salt tolerant and 'Patriot', 'Santa Ana', 'Tifgreen' and TifSport M the least tolerant within the hybrid group. Nevertheless, Santa Ana, for example, maintained relatively strong root growth as salinity increased, and so may show better salt tolerance in practice than predicted from the growth data alone. The 12 hybrid Bermudagrasses and the single African Bermudagrass genotype were all ranked above FloraTeXM Bermudagrass in terms of salt tolerance. However, seashore paspalum, which is widely acknowledged as a halophytic species showing high salt tolerance, ranked well above all 14 Cynodon genotypes in terms of salinity tolerance.
Resumo:
Wear resistance and recovery of 8 Bermudagrass (Cynodon dactylon (L.) Pers.) and hybrid Bermudagrass (C. Dactylon x C. transvaalensis Burtt-Davey) cultivars grown on a sandbased soil profile near Brisbane, Australia, were assessed in 4 wear trials conducted over a two year period. Wear was applied on a 7-day or a 14-day schedule by a modified Brinkman Traffic Simulator for 6-14 weeks at a time, either during winter-early spring or during summer-early autumn. The more frequent wear under the 7-day treatment was more damaging to the turf than the 14-day wear treatment, particularly during winter when its capacity for recovery from wear was severely restricted. There were substantial differences in wear tolerance among the 8 cultivars investigated, and the wear tolerance rankings of some cultivars changed between years. Wear tolerance was associated with high shoot density, a dense stolon mat strongly rooted to the ground surface, high cell wall strength as indicated by high total cell wall content, and high levels of lignin and neutral detergent fiber. Wear tolerance was also affected by turf age, planting sod quality, and wet weather. Resistance to wear and recovery from wear are both important components of wear tolerance, but the relative importance of their contributions to overall wear tolerance varies seasonally with turf growth rate.
Resumo:
Fine-textured hybrid bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy] cultivars have been widely used for golf putting greens and lawn bowls greens in warm-climate areas for more than 40 years. During the past decade, the choice of cultivar for professional turfgrass managers has been expanded by a range of secondgeneration hybrid bermudagrasses, which differ from the first-generation cultivars ‘Tifgreen’ and ‘Tifdwarf ’ in their management requirements. In this paper, we present comparative morphological and developmental data for seven cultivars (Champion Dwarf, FloraDwarf, MS-Supreme, Novotek, Tifdwarf, TifEagle, Tifgreen) grown in spaced plant and sward experiments at Cleveland, Australia (27º32’S lat, 153º15’E long, 25 masl). The four ‘ultradwarf ’ cultivars (Champion Dwarf, MS-Supreme, FloraDwarf, TifEagle) showed slower vertical extension and produced fewer inflorescences than Tifdwarf, Tifgreen, and Novotek. However, in terms of the length of stolon internodes and their overall rate of lateral spread, Champion Dwarf, FloraDwarf, and TifEagle were comparable to Tifdwarf; MS-Supreme (with longer internodes) spread faster laterally, though slower than Tifgreen (which had the longest stolon internodes). In unmown swards, the four ultradwarfs produced shorter leaves than Tifgreen, Tifdwarf, and Novotek, but only Champion Dwarf produced significantly narrower leaves than Tifgreen, Tifdwarf, and Novotek, with TifEagle leaves also significantly narrower than those of Tifgreen and Novotek. Minimum threshold temperatures for growth were approximately 9° to 10°C (air temperature) and 15° to 16°C at 10 cm soil depth.
Resumo:
X-ray and IR studies on Nasicon solid solutions, Na1+xZr2SixP3−xO12, are carried out as a function of composition x. X-ray diffraction studies show that the unit cell volume increases as x increases and exhibits a maximum at x ≈ 2. On further increase in x the unit cell volume decreases. The infrared absorption peak positions and the splitting of these absorption peaks suggest a distortion of the PO4 and SiO4 tetrahedra. But the distortion is not large enough to change the local symmetry around the phosphorus or silicon ion from Td to C3v.
Resumo:
A ternary metal-nucleotide complex, Na2[Cu(5’-IMP)2(im)o,8(H20)l,2(H20)2h]as~ 1be2e.n4 pHr2ep0a,r ed and its structure analyzed by X-ray diffraction (5’-IMP = inosine 5’-monophos hate; im = imidazole). The complex crystallizes in space group C222, with a = 8.733 (4) A, b = 23.213 (5) A, c = 21.489 (6) 1, and Z = 4. The structure was solved by the heavy-atom method and refined by full-matrix least-squares technique on the basis of 2008 observed reflections to a final R value of 0.087. Symmetry-related 5’-IMP anions coordinate in cis geometry through the N(7) atoms of the bases. The other cis positions of the coordination plane are statistically occupied by nitrogen atoms of disordered im groups and water oxygens with occupancies 0.4 and 0.6, respectively. Water oxygens in axial positions complete the octahedral coordination of Cu(I1). The complex is isostructural with C~S-[P~(S’-IMP),(NH~)~a] m”,o del proposed for Pt(I1) binding to DNA. The base binding observed in the present case is different from the typical ”phosphate only” binding shown from earlier studies on metal-nucleotide complexes containing various other ?r-aromatic amines.
Resumo:
Phase separation resulting in a single-crystal-single-crystal transition accompanied by a polycrystalline phase following the dehydration of hydrated bimetallic sulfates [Na2Mn1.167(SO4)(2)S0.33O1.167 center dot 2H(2)O and K4Cd3-(SO4)(5)center dot 3H(2)O] has been investigated by in situ variable-temperature single-crystal X-ray diffraction. With two examples, we illustrate the possibility of generating structural frameworks following dehydration in bimetallic sulfates, which refer to the possible precursor phases at that temperature leading to the mineral formation. The room-temperature structure of Na2Mn1.167(SO4)(2)S0.33O1.167 center dot 2H(2)O is trigonal, space group R (3) over bar. On heating the crystal in situ on the diffractometer, the diffraction images display spherical spots and concentric rings suggesting phase separation, with the spherical spots getting indexed in a monoclinic space group, C2/c. The structure determination based on this data suggests the formation of Na2Mn(SO4)(2). However, the diffraction images from concentric rings could not be indexed. In the second example, the room-temperature structure is determined to be K4Cd3(SO4)(5)center dot 3H(2)O, crystallizing in a monoclinic space group, P2(1)/n. On heating the crystal in situ, the diffraction images collected also have both spherical spots and diffuse rings. The spherical spots could be indexed to a cubic crystal system, space group P2(1)3, and the structure is K4Cd3(SO4)(3). The possible mechanism for the phase transition in the dehydration regime resulting in this remarkable single-crystal to single-crystal transition with the appearance of a surrogate polycrystalline phase is proposed.
Resumo:
Nanocrystalline Ce1-xRuxO2-delta (x = 0.05 and 0.10) of 8-10 nm sizes have been synthesized by hydrothermal method using melamine as complexing agent. Compounds have been characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray analysis (EDX) and their structures have been refined by the Rietveld method.The compounds crystallize in fluorite structure and the composition is Ce1-xRuxO2-x/2 where Ru is in +4 state and Ce is in mixed-valence (+3, +4) state. Substitution of Ru4+ ion in CeO2 activated the lattice oxygen. Ce1-xRuxO2-x/2 reversibly releases 0.22[O] and 0.42[O] for x = 0.05 and 0.10, respectively, which is higher than the maximumpossible OSC of 0.22 [O] observed for Ce0.50Zr0.50O2. Utilization of Higher OSC of Ce1-xRuxO2-delta (x = 0.05 and 0.10) is also reflected in terms of low-temperature CO oxidation with these catalysts, both in the presence and absence of feed oxygen. The Ru4+ ion acts as an active center for reducing molecules (CO, hydrocarbon ``HC'') and oxide ion vacancy acts as an active center for O-2 and NO, leading to low-temperature NO conversion to N-2. Thus due to Ru4+ ion, Ce1-xRuxO2-delta is not just a high oxygen storage material but also shows high activity toward CO, hydrocarbon ``HC'' oxidation, and NO reduction by CO at low temperature with high N-2 selectivity for three-way catalysis.
Resumo:
X-ray photoelectron and Auger spectroscopic techniques have been employed to study surface segregation and oxidation of Cu-1 at%Sn, Cu-9at%Pd and Cu-25at%Pd alloys. Both Cu-Pd(9%) and Cu-Pd(25%) alloys show segregation of Cu when heated above 500 K. The Pd concentration was reduced by 50% at 750 K compared to the bulk composition; the enthalpy of segregation of Cu is around - 6kJ/mol. Sn segregation is seen from 470 to 650 K in the Cu-Sn(1%) alloy, and a saturation plateau of Sn concentration above 650 K is observed. Surface oxidation of Cu-Sn(1%) and Cu-Pd(9%) alloys at 500 K showed the formation of Cu2O on the surface with total suppression of Sn or Pd on the respective alloy surfaces. On vacuum annealing the oxidised Cu-Sn alloy surface at 550 K, a displacement reaction 2Cu2O+Sn→4Cu+SnO2 was observed. However, under similar annealing of the oxidised Cu-Pd(9%) alloy surface at 500 K, oxide oxygen was totally desorbed leaving the Cu-Pd alloy surface clean. In the case of the Cu-Pd(25%) alloy, only dissociatively chemisorbed oxygen was seen at 500 K which desorbed at the same temperature. Oxygen spill-over from copper to palladium is suggested as the mechanism of oxygen desorption from the oxidised Cu-Pd alloy surfaces.
Resumo:
Surface oxidation of Co has been investigated at different temperatures in the 300–600 K range at oxygen exposures upto 106 L by XPES and AES techniques. In the XPES, both the valence band and core level bands have been employed to monitor the oxidation while in the AES, metal Auger intensity ratios as well as O(KLL)/Co(L23M45M45) ratios have been examined. Only CoO is formed on the surface at high oxygen exposures at and above 500 K.
Resumo:
Serum gamma-glutamyl transferase (GGT) activity is a marker of liver disease which is also prospectively associated with the risk of all-cause mortality, cardiovascular disease, type 2 diabetes and cancers. We have discovered novel loci affecting GGT in a genome-wide association study (rs1497406 in an intergenic region of chromosome 1, P = 3.9 x 10(-8); rs944002 in C14orf73 on chromosome 14, P = 4.7 x 10(-13); rs340005 in RORA on chromosome 15, P = 2.4 x 10(-8)), and a highly significant heterogeneity between adult and adolescent results at the GGT1 locus on chromosome 22 (maximum P(HET) = 5.6 x 10(-12) at rs6519520). Pathway analysis of significant and suggestive single-nucleotide polymorphism associations showed significant overlap between genes affecting GGT and those affecting common metabolic and inflammatory diseases, and identified the hepatic nuclear factor (HNF) family as controllers of a network of genes affecting GGT. Our results reinforce the disease associations of GGT and demonstrate that control by the GGT1 locus varies with age.
Resumo:
So, when was the last time you checked your poo? Checking your poo – it probably is not a conversation many patients want to have with their pharmacists. But bowel cancer screening remains an important tool in cancer detection...
Resumo:
Studies on the conformational and binding characteristics of the ionophoric antibiotic X-537A (lasalocid-A)�calcium ion complexes have been carried out in deuteriated acetonitrile (CD3 CN) using proton and carbon-13 nuclear magnetic resonance (1 H and 13C n.m.r.) spectroscopy. Detailed analysis of the salt-induced chemical shifts at various X-537A to calcium concentration ratios indicated that X-537A forms charged complexes with calcium with 2 : 1 and 1 : 1 stoicheiometries. The conformational model for the complex based on the n.m.r. data showed that the calcium ion is preferentially bound to one end of the molecule, which is binding to three oxygen atoms, the other end (the salicylic acid part) being relatively free. In the 2 : 1 (sandwich) complex, the calcium ion is sandwiched between two X-537A molecules with three oxygen atoms binding to it from each molecule.
Resumo:
Helping treat and manage addiction through pharmacotherapy is part of a complex process, write Dr Esther Lau and Professor Lisa Nissen, from the School of Clinical Sciences, Queensland University of Technology...