883 resultados para self-organizing maps (SOM)
Resumo:
Die Frage wie großmotorische Bewegungen gelernt werden beschäftigt nicht nur Sportler, Trainer und Sportlehrer sondern auch Ärzte und Physiotherapeuten. Die sportwissenschaftlichen Teildisziplinen Bewegungs- und Trainingswissenschaft versuchen diese Frage sowohl im Sinne der Grundlagenforschung (Wie funktioniert Bewegungslernen?) als auch hinsichtlich der praktischen Konsequenzen (Wie lehrt man Bewegungen?) zu beantworten. Innerhalb dieser Themenfelder existieren Modelle, die Bewegungslernen als gezielte und extern unterstützte Ausbildung zentralnervöser Bewegungsprogramme verstehen und solche, die Lernen als Selbstorganisationsprozess interpretieren. Letzteren ist das Differenzielle Lernen und Lehren (Schöllhorn, 1999) zuzuordnen, das die Notwendigkeit betont, Bewegungen durch die Steigerung der Variationen während der Aneignungsphase zu lernen und zu lehren. Durch eine Vielzahl an Variationen, so die Modellannahme, findet der Lernende ohne externe Vorgaben selbstorganisiert ein individuelles situatives Optimum. Die vorliegende Arbeit untersucht, welchen Einfluss Variationen verschiedener Art und Größe auf die Lern- und Aneignungsleistung großmotorischer Bewegungen haben und in wie fern personenübergreifende Optima existieren. In zwei Experimenten wird der Einfluss von räumlichen (Bewegungsausführung, Bewegungsergebnis) und zeitlichen Variationen (zeitliche Verteilung der Trainingsreize) auf die Aneignungs- und Lernleistung großmotorischer sportlicher Bewegungen am Beispiel zweier technischer Grundfertigkeiten des Hallenhockeys untersucht. Die Ergebnisse der Experimente stützen die bisherige Befundlage zum Differenziellen Lernen und Lehren, wonach eine Zunahme an Variation in der Aneignungsphase zu größeren Aneignungs- und Lernleistungen führt. Zusätzlich wird die Annahme bestätigt, dass ein Zusammenhang von Variationsbereich und Lernrate in Form eines Optimaltrends vorliegt. Neu sind die Hinweise auf die Dynamik von motorischen Lernprozessen (Experiment 1). Hier scheinen individuelle Faktoren (z. B. die Lernbiografie) als auch die Phase im Lernprozess (Aneignung, Lernen) Einfluss zu haben auf den Umfang und die Struktur eines für die optimale Adaptation notwendigen Variationsbereichs. Darüber hinaus weisen die Befunde auf verschiedene Aneignungs- und Lerneffekte aufgrund alleiniger Variation der zeitlichen Verteilung bei ansonsten gleichen Trainingsreizen hin (Experiment 2). Für zukünftige Forschungsarbeiten zum Erlernen großmotorischer Bewegungen und für die sportliche Praxis dürfte es daher erkenntnisreich sein, die Historie der intrinsischen Dynamik der lernenden Systeme stärker zu berücksichtigen. Neben Fragestellungen für die Grundlagenforschung zum (Bewegungs-)Lernen ließen sich hieraus unmittelbar praxisrelevante Erkenntnisse darüber ableiten, wie Bewegungslernprozesse mittels verschiedener Variationsbereiche strukturiert und gesteuert werden könnten.
Resumo:
Flüssigkristalline Elastomere (LCE) zeigen eine reversible Kontraktion und werden in der Literatur auch als „künstliche Muskeln“ bezeichnet. In dieser Arbeit werden sie mit einem integrierten Heizer versehen, um eine schnelle und präzise Ansteuerung zu ermöglichen. Anschließend werden diese als Aktoren zur Realisierung eines technischen Nachbaus des menschlichen Auges verwendet. rnDas einzigartige Verhalten der flüssigkristallinen Elastomere beruht auf der Kombination der Entropie Elastizität des Elastomers mit der Selbstorganisation der flüssigkristallinen Einheiten (Mesogene). Diese beiden Eigenschaften ermöglichen eine reversible, makroskopische Verformung beim Phasenübergang des Flüssigkristalls in die isotrope Phase. Hierbei ist es wichtig eine homogene Orientierung der Mesogene zu erzeugen, was in dieser Arbeit durch ein Magnetfeld erreicht wird. Da es sich um ein thermotropes flüssigkristallines Elastomer handelt, werden in dieser Arbeit zwei Ansätze vorgestellt, um den LCE intern zu heizen. Zum einen werden Kohlenstoffnanoröhren integriert, um diese über Strahlung oder Strom zu heizen und zum anderen wird ein flexibler Heizdraht integriert, welcher ebenfalls über Strom geheizt wird. rnUm den technischen Nachbau des menschlichen Auges zu realisieren, ist die Herstellung einer flüssigkristallinen Iris gezeigt. Hierzu wird ein radiales Magnetfeld aufgebaut, welches eine radiale Orientierung des Mesogene ermöglicht, wodurch wiederum eine radiale Kontraktion ermöglicht wird. Außerdem sind zwei Konzepte vorgestellt, um eine Elastomer Linse zu verformen. Zum einen wird diese mit einem ringförmigen LCE auseinandergezogen und somit abgeflacht. Zum anderen sind acht Aktoren über Anker an einer Linse angebracht, welche ebenfalls eine Vergrößerung der Linse bewirken. In beiden Fällen werden LCE mit dem zuvor präsentierten integrierten Heizdraht verwendet. Abschließend ist das Zusammensetzen des technische Nachbaus des menschlichen Auges dargestellt, sowie Aufnahmen, welche mit diesem erzeugt wurden.
Resumo:
Nitazoxanide (2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide; NTZ) represents the parent compound of a novel class of broad-spectrum anti-parasitic compounds named thiazolides. NTZ is active against a wide variety of intestinal and tissue-dwelling helminths, protozoa, enteric bacteria and a number of viruses infecting animals and humans. While potent, this poses a problem in practice, since this obvious non-selectivity can lead to undesired side effects in both humans and animals. In this study, we used real time PCR to determine the in vitro activities of 29 different thiazolides (NTZ-derivatives), which carry distinct modifications on both the thiazole- and the benzene moieties, against the tachyzoite stage of the intracellular protozoan Neospora caninum. The goal was to identify a highly active compound lacking the undesirable nitro group, which would have a more specific applicability, such as in food animals. By applying self-organizing molecular field analysis (SOMFA), these data were used to develop a predictive model for future drug design. SOMFA performs self-alignment of the molecules, and takes into account the steric and electrostatic properties, in order to determine 3D-quantitative structure activity relationship models. The best model was obtained by overlay of the thiazole moieties. Plotting of predicted versus experimentally determined activity produced an r2 value of 0.8052 and cross-validation using the "leave one out" methodology resulted in a q2 value of 0.7987. A master grid map showed that large steric groups at the R2 position, the nitrogen of the amide bond and position Y could greatly reduce activity, and the presence of large steric groups placed at positions X, R4 and surrounding the oxygen atom of the amide bond, may increase the activity of thiazolides against Neospora caninum tachyzoites. The model obtained here will be an important predictive tool for future development of this important class of drugs.
Resumo:
Zur Sicherstellung einer schnellen und flexiblen Anpassung an sich ändernde Anforderungen sind innerbetriebliche Materialbereitstellungskonzepte in immer stärkerem Maße zu flexibilisieren. Hierdurch kann die Erreichung logistischer Ziele in einem dynamischen Produktionsumfeld gesteigert werden. Der Beitrag stellt ein Konzept für eine adaptive Materialbereitstellung in flexiblen Produktionssystemen auf Grundlage einer agentenbasierten Transportplanung und -steuerung vor. Der Fokus liegt hierbei auf der Planung und Steuerung der auf Basis von Materialbedarfsmeldungen ausgelösten innerbetrieblichen Transporte. Neben Pendeltouren zur Versorgung des Produktionssystems findet auch das dynamische Pickup-and-Delivery-Problem Berücksichtigung. Das vorgestellte Konzept ist an den Anforderungen selbstorganisierender Produktionsprozesse ausgerichtet.
Resumo:
In his in uential article about the evolution of the Web, Berners-Lee [1] envisions a Semantic Web in which humans and computers alike are capable of understanding and processing information. This vision is yet to materialize. The main obstacle for the Semantic Web vision is that in today's Web meaning is rooted most often not in formal semantics, but in natural language and, in the sense of semiology, emerges not before interpretation and processing. Yet, an automated form of interpretation and processing can be tackled by precisiating raw natural language. To do that, Web agents extract fuzzy grassroots ontologies through induction from existing Web content. Inductive fuzzy grassroots ontologies thus constitute organically evolved knowledge bases that resemble automated gradual thesauri, which allow precisiating natural language [2]. The Web agents' underlying dynamic, self-organizing, and best-effort induction, enable a sub-syntactical bottom up learning of semiotic associations. Thus, knowledge is induced from the users' natural use of language in mutual Web interactions, and stored in a gradual, thesauri-like lexical-world knowledge database as a top-level ontology, eventually allowing a form of computing with words [3]. Since when computing with words the objects of computation are words, phrases and propositions drawn from natural languages, it proves to be a practical notion to yield emergent semantics for the Semantic Web. In the end, an improved understanding by computers on the one hand should upgrade human- computer interaction on the Web, and, on the other hand allow an initial version of human- intelligence amplification through the Web.
Resumo:
Software development teams increasingly adopt platform-as-a-service (PaaS), i.e., cloud services that make software development infrastructure available over the internet. Yet, empirical evidence of whether and how software development work changes with the use of PaaS is difficult to find. We performed a grounded-theory study to explore the affordances of PaaS for software development teams. We find that PaaS enables software development teams to enforce uniformity, to exploit knowledge embedded in technology, to enhance agility, and to enrich jobs. These affordances do not arise in a vacuum. Their emergence is closely interwoven with changes in methodologies, roles, and norms that give rise to self-organizing, loosely coupled teams. Our study provides rich descriptions of PaaS-based software development and an emerging theory of affordances of PaaS for software development teams.
Resumo:
Industrial applications of computer vision sometimes require detection of atypical objects that occur as small groups of pixels in digital images. These objects are difficult to single out because they are small and randomly distributed. In this work we propose an image segmentation method using the novel Ant System-based Clustering Algorithm (ASCA). ASCA models the foraging behaviour of ants, which move through the data space searching for high data-density regions, and leave pheromone trails on their path. The pheromone map is used to identify the exact number of clusters, and assign the pixels to these clusters using the pheromone gradient. We applied ASCA to detection of microcalcifications in digital mammograms and compared its performance with state-of-the-art clustering algorithms such as 1D Self-Organizing Map, k-Means, Fuzzy c-Means and Possibilistic Fuzzy c-Means. The main advantage of ASCA is that the number of clusters needs not to be known a priori. The experimental results show that ASCA is more efficient than the other algorithms in detecting small clusters of atypical data.
Resumo:
In the last years significant efforts have been devoted to the development of advanced data analysis tools to both predict the occurrence of disruptions and to investigate the operational spaces of devices, with the long term goal of advancing the understanding of the physics of these events and to prepare for ITER. On JET the latest generation of the disruption predictor called APODIS has been deployed in the real time network during the last campaigns with the new metallic wall. Even if it was trained only with discharges with the carbon wall, it has reached very good performance, with both missed alarms and false alarms in the order of a few percent (and strategies to improve the performance have already been identified). Since for the optimisation of the mitigation measures, predicting also the type of disruption is considered to be also very important, a new clustering method, based on the geodesic distance on a probabilistic manifold, has been developed. This technique allows automatic classification of an incoming disruption with a success rate of better than 85%. Various other manifold learning tools, particularly Principal Component Analysis and Self Organised Maps, are also producing very interesting results in the comparative analysis of JET and ASDEX Upgrade (AUG) operational spaces, on the route to developing predictors capable of extrapolating from one device to another.
Resumo:
The control of carbon nanotubes conductivity is generating interest in several fields since it may be relevant for a number of applications. The self-organizing properties of liquid crystals may be used to impose alignment on dispersed carbon nanotubes,thus control-ling their conductivity and its anisotropy. This leads to a number of possible applications in photonic and electronic devices such as electrically controlled carbon nanotube switch- es and crossboards. In this work, cells of liquid crystals doped with multi-walled nanotubes have been prepared in different configurations. Their conductivity variations upon switching have been investigated. It turns out that conductivity evolution depends on the initial configuration (either homogeneous, homeotropic or in-plane switching), the cell thickness and the switching record. The control of these manufacturing paramenters allows the modulation of the electrical behavior of carbon nanotubes.
Resumo:
Visual classification is the way we relate to different images in our environment as if they were the same, while relating differently to other collections of stimuli (e.g., human vs. animal faces). It is still not clear, however, how the brain forms such classes, especially when introduced with new or changing environments. To isolate a perception-based mechanism underlying class representation, we studied unsupervised classification of an incoming stream of simple images. Classification patterns were clearly affected by stimulus frequency distribution, although subjects were unaware of this distribution. There was a common bias to locate class centers near the most frequent stimuli and their boundaries near the least frequent stimuli. Responses were also faster for more frequent stimuli. Using a minimal, biologically based neural-network model, we demonstrate that a simple, self-organizing representation mechanism based on overlapping tuning curves and slow Hebbian learning suffices to ensure classification. Combined behavioral and theoretical results predict large tuning overlap, implicating posterior infero-temporal cortex as a possible site of classification.
Resumo:
Cell–cell recognition often requires the formation of a highly organized pattern of receptor proteins (a synapse) in the intercellular junction. Recent experiments [e.g., Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. (1998) Nature (London) 395, 82–86; Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. & Dustin, M. L. (1999) Science 285, 221–227; and Davis, D. M., Chiu, I., Fassett, M., Cohen, G. B., Mandelboim, O. & Strominger, J. L. (1999) Proc. Natl. Acad. Sci. USA 96, 15062–15067] vividly demonstrate a complex evolution of cell shape and spatial receptor–ligand patterns (several microns in size) in the intercellular junction during immunological synapse formation. The current view is that this dynamic rearrangement of proteins into organized supramolecular activation clusters is driven primarily by active cytoskeletal processes [e.g., Dustin, M. L. & Cooper, J. A. (2000) Nat. Immunol. 1, 23–29; and Wulfing, C. & Davis, M. M. (1998) Science 282, 2266–2269]. Here, aided by a quantitative analysis of the relevant physico-chemical processes, we demonstrate that the essential characteristics of synaptic patterns observed in living cells can result from spontaneous self-assembly processes. Active cellular interventions are superimposed on these self-organizing tendencies and may also serve to regulate the spontaneous processes. We find that the protein binding/dissociation characteristics, protein mobilities, and membrane constraints measured in the cellular environment are delicately balanced such that the length and time scales of spontaneously evolving patterns are in near-quantitative agreement with observations for synapse formation between T cells and supported membranes [Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. & Dustin, M. L. (1999) Science 285, 221–227]. The model we present provides a common way of analyzing immunological synapse formation in disparate systems (e.g., T cell/antigen-presenting cell junctions with different MHC-peptides, natural killer cells, etc.).
Resumo:
A teoria de Jean Piaget sobre o desenvolvimento da inteligência tem sido utilizada na área de inteligência computacional como inspiração para a proposição de modelos de agentes cognitivos. Embora os modelos propostos implementem aspectos básicos importantes da teoria de Piaget, como a estrutura do esquema cognitivo, não consideram o problema da fundamentação simbólica e, portanto, não se preocupam com os aspectos da teoria que levam à aquisição autônoma da semântica básica para a organização cognitiva do mundo externo, como é o caso da aquisição da noção de objeto. Neste trabalho apresentamos um modelo computacional de esquema cognitivo inspirado na teoria de Piaget sobre a inteligência sensório-motora que se desenvolve autonomamente construindo mecanismos por meio de princípios computacionais pautados pelo problema da fundamentação simbólica. O modelo de esquema proposto tem como base a classificação de situações sensório-motoras utilizadas para a percepção, captação e armazenamento das relações causais determiníscas de menor granularidade. Estas causalidades são então expandidas espaço-temporalmente por estruturas mais complexas que se utilizam das anteriores e que também são projetadas de forma a possibilitar que outras estruturas computacionais autônomas mais complexas se utilizem delas. O modelo proposto é implementado por uma rede neural artificial feed-forward cujos elementos da camada de saída se auto-organizam para gerar um grafo sensóriomotor objetivado. Alguns mecanismos computacionais já existentes na área de inteligência computacional foram modificados para se enquadrarem aos paradigmas de semântica nula e do desenvolvimento mental autônomo, tomados como base para lidar com o problema da fundamentação simbólica. O grafo sensório-motor auto-organizável que implementa um modelo de esquema inspirado na teoria de Piaget proposto neste trabalho, conjuntamente com os princípios computacionais utilizados para sua concepção caminha na direção da busca pelo desenvolvimento cognitivo artificial autônomo da noção de objeto.
Resumo:
Multi-party voice-over-IP (MVoIP) services provide economical and convenient group communication mechanisms for many emerging applications such as distance collaboration systems, on-line meetings and Internet gaming. In this paper, we present a light peer-to-peer (P2P) protocol to provide MVoIP services on small platforms like mobile phones and PDAs. Unlike other proposals, our solution is fully distributed and self-organizing without requiring specialized servers or IP multicast support.
Resumo:
In this work, we present a multi-camera surveillance system based on the use of self-organizing neural networks to represent events on video. The system processes several tasks in parallel using GPUs (graphic processor units). It addresses multiple vision tasks at various levels, such as segmentation, representation or characterization, analysis and monitoring of the movement. These features allow the construction of a robust representation of the environment and interpret the behavior of mobile agents in the scene. It is also necessary to integrate the vision module into a global system that operates in a complex environment by receiving images from multiple acquisition devices at video frequency. Offering relevant information to higher level systems, monitoring and making decisions in real time, it must accomplish a set of requirements, such as: time constraints, high availability, robustness, high processing speed and re-configurability. We have built a system able to represent and analyze the motion in video acquired by a multi-camera network and to process multi-source data in parallel on a multi-GPU architecture.
Resumo:
Customizing shoe manufacturing is one of the great challenges in the footwear industry. It is a production model change where design adopts not only the main role, but also the main bottleneck. It is therefore necessary to accelerate this process by improving the accuracy of current methods. Rapid prototyping techniques are based on the reuse of manufactured footwear lasts so that they can be modified with CAD systems leading rapidly to new shoe models. In this work, we present a shoe last fast reconstruction method that fits current design and manufacturing processes. The method is based on the scanning of shoe last obtaining sections and establishing a fixed number of landmarks onto those sections to reconstruct the shoe last 3D surface. Automated landmark extraction is accomplished through the use of the self-organizing network, the growing neural gas (GNG), which is able to topographically map the low dimensionality of the network to the high dimensionality of the contour manifold without requiring a priori knowledge of the input space structure. Moreover, our GNG landmark method is tolerant to noise and eliminates outliers. Our method accelerates up to 12 times the surface reconstruction and filtering processes used by the current shoe last design software. The proposed method offers higher accuracy compared with methods with similar efficiency as voxel grid.