927 resultados para security network
Resumo:
Nonlinearity, uncertainty and subjectivity are the three predominant characteristics of contractors prequalification which cause the process more of an art than a scientific evaluation. A fuzzy neural network (FNN) model, amalgamating both the fuzzy set and neural network theories, has been developed aiming to improve the objectiveness of contractor prequalification. Through the FNN theory, the fuzzy rules as used by the prequalifiers can be identified and the corresponding membership functions can be transformed. Eighty-five cases with detailed decision criteria and rules for prequalifying Hong Kong civil engineering contractors were collected. These cases were used for training (calibrating) and testing the FNN model. The performance of the FNN model was compared with the original results produced by the prequalifiers and those generated by the general feedforward neural network (GFNN, i.e. a crisp neural network) approach. Contractor’s ranking orders, the model efficiency (R2) and the mean absolute percentage error (MAPE) were examined during the testing phase. These results indicate the applicability of the neural network approach for contractor prequalification and the benefits of the FNN model over the GFNN model. The FNN is a practical approach for modelling contractor prequalification.
Resumo:
The selection criteria for contractor pre-qualification are characterized by the co-existence of both quantitative and qualitative data. The qualitative data is non-linear, uncertain and imprecise. An ideal decision support system for contractor pre-qualification should have the ability of handling both quantitative and qualitative data, and of mapping the complicated nonlinear relationship of the selection criteria, such that rational and consistent decisions can be made. In this research paper, an artificial neural network model was developed to assist public clients identifying suitable contractors for tendering. The pre-qualification criteria (variables) were identified for the model. One hundred and twelve real pre-qualification cases were collected from civil engineering projects in Hong Kong, and eighty-eight hypothetical pre-qualification cases were also generated according to the “If-then” rules used by professionals in the pre-qualification process. The results of the analysis totally comply with current practice (public developers in Hong Kong). Each pre-qualification case consisted of input ratings for candidate contractors’ attributes and their corresponding pre-qualification decisions. The training of the neural network model was accomplished by using the developed program, in which a conjugate gradient descent algorithm was incorporated for improving the learning performance of the network. Cross-validation was applied to estimate the generalization errors based on the “re-sampling” of training pairs. The case studies show that the artificial neural network model is suitable for mapping the complicated nonlinear relationship between contractors’ attributes and their corresponding pre-qualification (disqualification) decisions. The artificial neural network model can be concluded as an ideal alternative for performing the contractor pre-qualification task.
Resumo:
Reflective learning is vital for successful practice-led education such as animation, multimedia design and graphic design, and social network sites can accommodate various learning styles for effective reflective learning. In this paper, the researcher studies reflective learning through social network sites with two animation units. These units aim to provide students with an understanding of the tasks and workflows involved in the production of style sheets, character sheets and motion graphics for use in 3D productions for film and television and game design. In particular, an assessment in these units requires students to complete their online reflective journals throughout the semester. The reflective learning has been integrated within the unit design and students are encouraged to reflect weekly learning processes and outcomes. A survey evaluating for students’ learning experience was conducted, and its outcomes indicate that social network site based reflective learning will not be effective without considering students’ learning circumstances and designing peer-to-peer interactions.
Resumo:
The creative industries are important because they are clustered at the point of attraction for a billion or more young people around the world. They're the drivers of demographic, economic and political change. They start from the individual talent of the creative artist and the individual desire and aspiration of the audience. These are the raw materials for innovation, change and emergent culture, scaled up to form new industries and coordinated into global markets based on social networks.
Resumo:
Network-based Intrusion Detection Systems (NIDSs) analyse network traffic to detect instances of malicious activity. Typically, this is only possible when the network traffic is accessible for analysis. With the growing use of Virtual Private Networks (VPNs) that encrypt network traffic, the NIDS can no longer access this crucial audit data. In this paper, we present an implementation and evaluation of our approach proposed in Goh et al. (2009). It is based on Shamir's secret-sharing scheme and allows a NIDS to function normally in a VPN without any modifications and without compromising the confidentiality afforded by the VPN.
Resumo:
A method of improving the security of biometric templates which satisfies desirable properties such as (a) irreversibility of the template, (b) revocability and assignment of a new template to the same biometric input, (c) matching in the secure transformed domain is presented. It makes use of an iterative procedure based on the bispectrum that serves as an irreversible transformation for biometric features because signal phase is discarded each iteration. Unlike the usual hash function, this transformation preserves closeness in the transformed domain for similar biometric inputs. A number of such templates can be generated from the same input. These properties are illustrated using synthetic data and applied to images from the FRGC 3D database with Gabor features. Verification can be successfully performed using these secure templates with an EER of 5.85%
Resumo:
Networks form a key part of the infrastructure of contemporary governance arrangements and, as such, are likely to continue for some time. Networks can take many forms and be formed for many reasons. Some networks have been explicitly designed to generate a collective response to an issue; some arise from a top down perspective through mandate or coercion; while others rely more heavily on interpersonal relations and doing the right thing. In this paper, these three different perspectives are referred to as the “3I”s: Instrumental, Institutional or Interpersonal. It is proposed that these underlying motivations will affect the process dynamics within the different types of networks in different ways and therefore influence the type of outcomes achieved. This proposition is tested through a number of case studies. An understanding of these differences will lead to more effective design, management and clearer expectations of what can be achieved through networks.
Resumo:
We consider a new form of authenticated key exchange which we call multi-factor password-authenticated key exchange, where session establishment depends on successful authentication of multiple short secrets that are complementary in nature, such as a long-term password and a one-time response, allowing the client and server to be mutually assured of each other's identity without directly disclosing private information to the other party. Multi-factor authentication can provide an enhanced level of assurance in higher-security scenarios such as online banking, virtual private network access, and physical access because a multi-factor protocol is designed to remain secure even if all but one of the factors has been compromised. We introduce a security model for multi-factor password-authenticated key exchange protocols, propose an efficient and secure protocol called MFPAK, and provide a security argument to show that our protocol is secure in this model. Our security model is an extension of the Bellare-Pointcheval-Rogaway security model for password-authenticated key exchange and accommodates an arbitrary number of symmetric and asymmetric authentication factors.
Resumo:
Buffer overflow vulnerabilities continue to prevail and the sophistication of attacks targeting these vulnerabilities is continuously increasing. As a successful attack of this type has the potential to completely compromise the integrity of the targeted host, early detection is vital. This thesis examines generic approaches for detecting executable payload attacks, without prior knowledge of the implementation of the attack, in such a way that new and previously unseen attacks are detectable. Executable payloads are analysed in detail for attacks targeting the Linux and Windows operating systems executing on an Intel IA-32 architecture. The execution flow of attack payloads are analysed and a generic model of execution is examined. A novel classification scheme for executable attack payloads is presented which allows for characterisation of executable payloads and facilitates vulnerability and threat assessments, and intrusion detection capability assessments for intrusion detection systems. An intrusion detection capability assessment may be utilised to determine whether or not a deployed system is able to detect a specific attack and to identify requirements for intrusion detection functionality for the development of new detection methods. Two novel detection methods are presented capable of detecting new and previously unseen executable attack payloads. The detection methods are capable of identifying and enumerating the executable payload’s interactions with the operating system on the targeted host at the time of compromise. The detection methods are further validated using real world data including executable payload attacks.