911 resultados para scaling rules
Resumo:
In this paper we introduce a new axiom, denoted claims separability, that is satisfied by several classical division rules defined for claims problems. We characterize axiomatically the entire family of division rules that satisfy this new axiom. In addition, employing claims separability, we characterize the minimal overlap rule, given by O'Neill (1982), Piniles rule and the rules in the TAL-family, introduced by Moreno-Ternero and Villar (2006), which includes the uniform gains rule, the uniform losses rule and the Talmud rule.
Resumo:
A technique is developed for the design of lenses for transitioning TEM waves between conical and/or cylindrical transmission lines, ideally with no reflection or distortion of the waves. These lenses utilize isotropic but inhomogeneous media and are based on a solution of Maxwell's equations instead of just geometrical optics. The technique employs the expression of the constitutive parameters, ɛ and μ, plus Maxwell's equations, in a general orthogonal curvilinear coordinate system in tensor form, giving what we term as formal quantities. Solving the problem for certain types of formal constitutive parameters, these are transformed to give ɛ and μ as functions of position. Several examples of such lenses are considered in detail.
Resumo:
The mode-area, scaling properties of helical-core optical fibres are numerically studied and the limit of core size for achievable single-mode operation is explored. By appropriate design, helical-core fibres can operate in a single mode with possible scaling up to 300 mu m in core diameter with numerical aperture 0.1.