943 resultados para rough turning
Resumo:
"Selected papers given in ... and ... at the Annual Meetings of the American Statistical Association and other related conferences"--(varies).
Resumo:
Mode of access: Internet.
Resumo:
Includes indexes.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"Uniform edition"--t.p. verso.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Different measures are used to define concentrations of biodiversity — so-called 'hotspots'. More rigorous, global-scale analyses of how they compare will be essential for efficient resource allocation to conservation.
Resumo:
Like faces, body postures are susceptible to an inversion effect in untrained viewers. The inversion effect may be indicative of configural processing, but what kind of configural processing is used for the recognition of body postures must be specified. The information available in the body stimulus was manipulated. The presence and magnitude of inversion effects were compared for body parts, scrambled bodies, and body halves relative to whole bodies and to corresponding conditions for faces and houses. Results suggest that configural body posture recognition relies on the structural hierarchy of body parts, not the parts themselves or a complete template match. Configural recognition of body postures based on information about the structural hierarchy of parts defines an important point on the configural processing continuum, between recognition based on first-order spatial relations and recognition based on holistic undifferentiated template matching.
Resumo:
Educational development for research supervisors is still a recent phenomenon. Early optional sessions on research supervision have now been replaced, particularly in the UK, continental Europe, and Australasia, by comprehensive and, in some cases, mandatory programs. Yet some of these programs focus solely on the administrative roles and responsibilities of supervisors, attempting to provide technical “fixes” that deny the genuine difficulties and complexities involved in supervision relationships. Some research supervisors resent the intrusion of educational developers into what many of them have regarded as a private pedagogical space. They interpret such programs as further instances of the quality assurance agendas of governments and university administrators, and are justifiably suspicious of what some describe as the colonial underpinnings of educational development. These reactions create tensions for educational developers. This article explores why educational development can be problematic for research supervisors. It then charts some current supervision educational development programs that seek to go beyond administrative interpretations of supervision. Finally, it examines whether the “Compassionate Rigour” supervision program, developed to address these difficulties, manages to respond respectfully and sensitively to supervisors’ educational development needs.
Resumo:
An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.
Resumo:
Van der Waals forces often dominate interactions and adhesion between fine particles and, in turn, decisively influence the bulk behaviour of powders. However, so far there is no effective means to characterize the adhesive behaviour of such particles. A complication is that most powder particles have rough surfaces, and it is the asperities on the surfaces that touch, confounding the actual surface that is in contact. Conventional approaches using surface energy provide limited information regarding adhesion, and pull-off forces measured through atomic force microscope (AFM) are highly variable and difficult to interpret. In this paper we develop a model which combines the Rumpf-Rabinovich and the JKR-DMT theories to account simultaneously for the effects of surface roughness and deformation on adhesion. This is applied to a 'characteristic asperity' which may be easily obtained from AFM measurements. The concept of adhesiveness, a material property reflecting the influences of elastic deformability, surface roughness, and interfacial surface energy, is introduced as an efficient and quantitative measure of the adhering tendency of a powder. Furthermore, a novel concept of specific adhesiveness is proposed as a convenient tool for characterizing and benchmarking solid materials. This paper provides an example to illustrate the use of the proposed theories. (c) 2005 Elsevier B.V. All rights reserved.