999 resultados para rotation structures
Resumo:
In a previous study, we concluded that overproduction of nitric oxide (NO) by inducible nitric Oxide synthase (iNOS) in the late phase of sepsis prevents hypothalamic activation, blunts vasopressin secretion and contributes to hypotension, irreversible shock and death. The aim of this follow-up study was to evaluate if the same neuronal activation pattern happens in brain structures related to cardiovascular functions. Male Wistar rats received intraperitoneal injections of aminoguanidine, an iNOS inhibitor, or saline 30 min before cecal ligation and puncture (CLP) or sham surgeries. The animals were perfused 6 or 24 h after the surgeries and the brains were removed and processed for Fos immunocytochemistry We observed an increase (P < 0.001) in c-fos expression 6 h after CLP in the area postrema (AP), nucleus of he tractus solitarius (NTS), ventral lateral medulla (VLM), locus coeruleus (LC) and parabrachial nucleus (PB). At 24 h after CLP, however, c-fos expression was strongly decreased in all these nuclei (P < 0.05), except for the VLM. Aminoguanidine reduced c-fos expression in the AP and NTS at 6 h after CLR but showed an opposite effect at 24 h, with an increase in the AP, NTS, and also in the VLM. No such effect was observed in the LC and PB at 6 or 24 h. In all control animals, c-fos expression was minimal or absent. We conclude that in the early phase of sepsis iNOS-derived NO may be partially responsible for the activation of brain structures related to cardiovascular regulation. During the late phase, however, this activation is reduced or abolished. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A correlation between pain sensation and neuronal c-fos expression has been analyzed following experimental rapid maxillar expansion (RME). Adult male Wistar rats were anaesthetized and divided into three groups: animals that received an orthodontic apparatus, which was immediately removed after the insertion (control), animals that received an inactivated orthodontic apparatus (without force), and animals that received an orthodontic apparatus previously activated (140 g force). After 6, 24, 48, or 72 h, the animals were re-anaesthetized, and perfused with 4% paraformaldehyde. The brains were removed, fixed, and sections containing brain structures related to nociception were processed for Fos protein immunohistochemistry (IHC). The insertion of the orthodontic apparatus with 140 g was able to cause RME that could be seen by radiography. The IHC results showed that the number of activated neurons in the different nuclei changed according to the duration of appliance insertion and followed a temporal pattern similar to that of sensations described in clinics. The animals that received the orthodontic apparatus without force did not show RME but a smaller c-fos expression in the same brain structures. In conclusion, we demonstrate that orthodontic force used for palate disjunction activates brain structures that are related to nociception, and that this activation is related to the pain sensation described during orthodontic treatment. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Purpose: The double system of support, in which the distal-extension removable partial denture adapts, causes inadequate stress around abutment teeth, increasing the possibility of unequal bone resorption. Several ways to reduce or more adequately distribute the stress between abutment teeth and residual ridges have been reported; however, there are no definitive answers to the problem. The purpose of this study was to analyze, by means of photoelasticity, the most favorable stress distribution using three retainers: T bar, rest, proximal plate, I bar (RPI), and circumferential with mesialized rest. Materials and Methods: Three photoelastic models were made simulating a Kennedy Class II inferior arch. Fifteen dentures with long saddles, five of each design, were adjusted to the photoelastic patterns and submitted first to uniformly distributed load, and then to a load localized on the last artificial tooth. The saddles were then shortened and the tests repeated. The quantitative and qualitative analyses of stress intensity were done manually and by photography, respectively. For intragroup analyses the Wilcoxon test for paired samples was used, while for intergroup analyses Friedman and Wilcoxon tests were used to better identify the differences (p < 0.05). Results: The RPI retainer, followed by the T bar, demonstrated the best distribution of load between teeth and residual ridge. The circumferential retainer caused greater concentration of stress between dental apexes. Stress distribution was influenced by the type of retainer, the length of the saddle, and the manner of load application. Conclusions: The long saddles and the uniformly distributed loads demonstrated better distribution of stress on support structures.
Resumo:
Cigarette smoke is a significant source of cadmium, lead, and toxic elements, which are absorbed into the human organism. In this context, the aim of this study was to investigate in vitro the presence of toxic elements, cadmium, and lead deriving from cigarette smoke in the resin composite, dentine, and dental enamel. Eight cylindrical specimens were fabricated from resin composite, bovine enamel, and root dentin fragments that were wet ground and polished with abrasive paper to obtain sections with 6-mm diameter and 2-mm thickness. All specimens were exposed to the smoke of 10 cigarettes/day during 8 days. After the simulation of the cigarette smoke, the specimens were examined with scanning electron microscopy (SEM) and the energy-dispersive X-ray analysis. In the photomicrographic analysis in SEM, no morphological alterations were found; however, the microanalysis identified the presence of cadmium, arsenic, and lead in the different specimens. These findings suggest that the deposition of these elements derived from cigarette smoke could be favored by dental structures and resin composite. Microsc. Res. Tech. 74:287-291, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Recent advances in several experimental techniques have enabled detailed structural information to be obtained for floating (Langmuir) monolayers and Langmuir-Blodgett films. These techniques are described briefly and their application to the study of films of fatty acids and their salts is discussed. Floating monolayers on aqueous subphases have been shown to possess a complex polymorphism with phases whose structures may be compared to those of smectic mesophases. However, only those phases that exist at high surface pressures are normally used in Langmuir-Blodgett (LB) deposition. In single LB monolayers of fatty acids and fatty acid salts the acyl chains are in the all-cans conformation with their long axes normal to the substrate. The in-plane molecular packing is hexagonal with long-range bond orientational order and short-range positional order: known as the hexatic-B structure. This structure is found irrespective of the phase of the parent floating monolayer. The structures of multilayer LB films are similar to the structures of their bulk crystals, consisting of stacked bilayer lamellae. Each lamella is formed from two monolayers of fatty acid molecules or ions arranged head to head and held together by hydrogen bonding between pairs of acids or ionic bonding through the divalent cations. With acids the acyl chains are tilted with respect to the substrate normal and have a monoclinic structure, whereas the salts with divalent cations may have the chains normal to the substrate or tilted. The in-plane structures are usually centred rectangular with the chains in the trans conformation and packed in a herringbone pattern, Multilayer films of the acids show only a single-step order-disorder transition at the malting point, This temperature tends to rise as the number of layers increases. Complex changes occur when multilayer films of the salts are heated. Disorder of the chains begins at low temperatures but the arrangement of the head groups does not alter until the melting temperature is reached, Slow heating to a temperature just below the melting temperature gives, with some salts, a radical change in phase. The lamellar structure disappears and a new phase consisting of cylindrical rods lying parallel to the substrate surface and stacked in a hexagonal pattern is formed, In each rod the cations are aligned along the central axis surrounded by the disordered acyl chains. (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
Mono- and dicopper(II) complexes of a series of potentially bridging hexaamine ligands have been prepared and characterized in the solid state by X-ray crystallography. The crystal structures of the following Cu-II complexes are reported: [Cu(HL3)](ClO4)(3), C11H31Cl3CuN6O12, monoclinic, P2(1)/n, a = 8.294(2) Angstrom, b = 18.364(3) Angstrom, c = 15.674(3) Angstrom, beta = 94.73(2)degrees, Z = 4; {[Cu-2(L-4)(CO3)](2)}(ClO4)(4). 4H(2)O, C40H100Cl4Cu4N12O26, triclinic, P (1) over bar, a = 9.4888(8) Angstrom, b=13.353(1) Angstrom,. c = 15.329(1) Angstrom, alpha = 111.250(7)degrees, beta = 90.068(8)degrees, gamma = 105.081(8)degrees, Z=1; [Cu-2(L-5)(OH2)(2)](ClO4)(4), C(13)H(36)Cl(4)Cu(2)Z(6)O(18), monoclinic, P2(1)/c, a = 7.225(2) Angstrom. b = 8.5555(5) Angstrom, c = 23.134(8) Angstrom, beta = 92.37(1)degrees, Z = 2; [Cu-2(L-6)(OH2)(2)](ClO4)(4). 3H(2)O, C14H44Cl4Cu2N6O21, monoclinic, P2(1)/a, a = 15.204(5) Angstrom, b = 7.6810(7) Angstrom, c = 29.370(1) Angstrom, beta = 100.42(2)degrees, Z = 4. Solution spectroscopic properties of the bimetallic complexes indicate that significant conformational changes occur upon dissolution, and this has been probed with EPR spectroscopy and molecular mechanics calculations.
Resumo:
It has been argued that beyond software engineering and process engineering, ontological engineering is the third capability needed if successful e-commerce is to be realized. In our experience of building an ontological-based tendering system, we face the problem of building an ontology. In this paper, we demonstrate how to build ontologies in the tendering domain. The ontology life cycle is identified. Extracting concepts from existing resources like on-line catalogs is described. We have reused electronic data interchange (EDI) to build conceptual structures in the tendering domain. An algorithm to extract abstract ontological concepts from these structures is proposed.
Resumo:
The radiation chemistry of two TFE/PMVE copolymers with TFE mole fractions of 0.66 and 0.81 has been studied under vacuum using Co-60 gamma -radiation over absorbed dose ranges up to 4.2 MGy. The radiolysis temperature was 313 K for both TFE/PMVE copolymers. New structure formation in the copolymers was identified by solid-state F-19 NMR and the G-values for new chain ends of 2.1 and 0.5 and for branching sites of 0.9 and 0.2 have been obtained for the TFE/PMVE with TFE mole fractions of 0.66 and 0.81, respectively. The relative yields of-O-CF3 and -CF2-CF3 chain ends were found to be proportional to the copolymer composition, but the yields of the -CF2-CF3 chain ends and -CF- branch points mere not linearly related ia the composition. rather they wets correlated with the radical yields measured at 77 K. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
SFTI-1 is a recently discovered cyclic peptide trypsin inhibitor from sunflower seeds comprising 14 amino acid residues. It is the most potent known Bowman-Birk inhibitor and the only naturally occurring cyclic one. The solution structure of SFTI-1 has been determined by H-1-NMR spectroscopy and compared with a synthetic acyclic permutant. The solution structures of both are remarkably similar. The lowest energy structures from each family of 20 structures of cyclic and acyclic SFTI-1 have an rmsd over the backbone and heavy atoms of 0.29 Angstrom and 0.66 Angstrom, respectively. The structures consist of two short antiparallel beta -strands joined by an extended loop containing the active site at one end. Cyclic SFTI-1 also has a hairpin turn completing the cycle. Both molecules contain particularly stable arrangements of cross-linking hydrogen bonds between the beta -strands and a single disulfide bridge, making them rigid and well defined in solution. These stable arrangements allow both the cyclic and acyclic variants of SFTI-1 to inhibit trypsin with very high potencies (0.5 nM and 12.1 nM, respectively). The cyclic nature of SFTI-1 appears to have evolved to provide higher trypsin inhibition as well as higher stability. The solution structures are similar to the crystal structure of the cyclic inhibitor in complex with trypsin. The lack of a major conformational change upon binding suggests that the structure of SFTI-1 is rigid and already pre-organized for maximal binding due to minimization of entropic losses compared to a more flexible ligand. These properties make SFTI-1 an ideal platform for the design of small peptidic pharmaceuticals or pesticides. (C) 2001 Academic Press.
Resumo:
Composite clay nanostructures (CCNs) were observed in intercalating Laponite clay with alumina in the presence of alkyl polyether surfactants which contain hydrophobic alkyl chains and ether groups. Such nanostructured clays are highly porous solids consisting of randomly orientated clay platelets intercalated with alumina nanoparticles. The pores in the product solids are larger than the dimension of the surfactant molecules, ranging from 2 to 10 nm. This suggests that the micelles of the surfactant molecules, rather than the molecules, act as templates in the synthesis. Interestingly, it is found that the size of the framework pores was directly proportional to the amount of the surfactants in terms of moles, but shows no evident dependence on the size of the surfactant molecules. Broad pore size distributions were observed for the product CCNs. This study demonstrates that introducing surfactants in the pillaring process of clays is a powerful strategy for tailoring the pore structures of nanoporous clays. With this new technique, it is possible to design and engineer such composite clay nanostructures with desired pore and surface properties by the proper choice of surfactant amounts and preparation conditions.
Resumo:
Electromyographic (EMG) studies have shown that a large number of trunk muscles are recruited during axial rotation. The functional roles of these trunk muscles in axial rotation are multiple and have not been well investigated. In addition, there is no information on the coupling torque at different exertion levels during axial rotation. The aim of the study was to investigate the functional roles of rectus abdominis. external oblique. internal oblique, latissimus dorsi, iliocostalis lumborum and multifidus during isometric right and left axial rotation at 100%, 70%, 50% and 30% maximum voluntary contractions (MVC) in a standing position. The coupling torques in sagittal and coronal planes were measured during axial rotation to examine the coupling nature of torque at different levels of exertions. Results showed that the coupled sagittal torque switches from nil to flexion at maximum exertion of axial rotation. Generally, higher EMG activities were shown at higher exertion levels for all the trunk muscles. Significant differences in activity between the right and left axial rotation exertions were demonstrated in external oblique, internal oblique, latissimus dorsi and iliocostalis lumborum while no difference was shown in rectus abdominis and multifidus. These results demonstrated the different functional roles of trunk muscles during axial rotation. This is important considering that the abdominal and back muscles not only produce torque but also maintain the spinal posture and stability during axial rotation exertions. The changing coupling torque direction in the sagittal plane when submaximal to maximal exertions were compared may indicate the complex nature of the kinetic coupling of trunk muscles. (C) 2001 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
As determined by X-ray crystallography, Meldrum's acid derivatives 8–19 feature dihedral angles around the central CC double bonds between 3 and 83°. Hydrogen bonds between substituents RHN and the carbonyl groups favour near-planarity. Sterically demanding substituents favour large dihedral angles and zwitterionic structures as in formula 20. AM1 calculations of the structures are in excellent agreement with the experimental X-ray data, provided a dielectric field is incorporated (?= 40). This can be ascribed to the highly polar (zwitterionic) nature of the molecules. It is further predicted that all these molecules, including those that are stabilised in a planar form by intramolecular hydrogen bonds, undergo rapid rotation about the central CC bonds at room temperature. DFT calculations incorporating a dielectric field model (PCM) are in excellent agreement with the near-perpendicular arrangement of the alkene moiety in 19.