962 resultados para retinal ganglion cells
Resumo:
PURPOSE. Bone marrow–derived endothelial progenitor cells (EPCs) contribute to vascular repair although it is uncertain how local endothelial cell apoptosis influences their reparative function. This study was conducted to determine how the presence of apoptotic bodies at sites of endothelial damage may influence participation of EPCs in retinal microvascular repair.
METHODS. Microlesions of apoptotic cell death were created in monolayers of retinal microvascular endothelial cells (RMECs) by using the photodynamic drug verteporfin. The adhesion of early-EPCs to these lesions was studied before detachment of the apoptotic cells or after their removal from the wound site. Apoptotic bodies were fed to normal RMECs and mRNA levels for adhesion molecules were analyzed.
RESULTS. Endothelial lesions where apoptotic bodies were left attached at the wound site showed a fivefold enhancement in EPC recruitment (P < 0.05) compared with lesions where the apoptotic cells had been removed. In intact RMEC monolayers exposed to apoptotic bodies, expression of ICAM, VCAM, and E-selectin was upregulated by 5- to 15-fold (P < 0.05–0.001). EPCs showed a characteristic chemotactic response (P < 0.05) to conditioned medium obtained from apoptotic bodies, whereas analysis of the medium showed significantly increased levels of VEGF, IL-8, IL-6, and TNF-a when compared to control medium; SDF-1 remained unchanged.
CONCLUSIONS. The data indicate that apoptotic bodies derived from retinal capillary endothelium mediate release of proangiogenic cytokines and chemokines and induce adhesion molecule expression in a manner that facilitates EPC recruitment.
Resumo:
Pericytes are known to communicate with endothelial cells by direct contact and by releasing cytokines such as TGF-beta. There is also strong evidence that pericytes act as regulators of endothelial cell proliferation and differentiation. We have investigated the effect of pericyte-conditioned medium (PCM) on proliferation of human microvascular endothelial cells in vitro, together with the expression of the vasoregulatory molecules, constitutive and inducible nitric oxide synthases (ecNOS and iNOS), and endothelin-1 (ET-1). Expression was measured at the mRNA level using semiquantitative RT-PCR for all three genes and at the protein level for ecNOS and iNOS using Western blotting. Growth curves for HMECs showed that PCM inhibits proliferation, eventually leading to cell death. Exposure to PCM repressed iNOS mRNA expression fivefold after 6 h. A similar, though delayed, reduction in protein levels was observed. ecNOS mRNA was slightly induced at 6 h, though there was no significant change in ecNOS protein. By contrast, ET-1 mRNA was induced 2.3-fold after 6 h exposure to PCM. We conclude that pericytes release a soluble factor or factors that are potent inhibitors of endothelial cell growth and promote vasoconstriction by up-regulating endothelin-1 and down-regulating iNOS. (C) 2000 Academic Press.
Resumo:
The 67kDa laminin receptor (67LR) plays an important role in vascular cell function and dysfunction. The present study has examined 67LR expression in retinal microvascular endothelial cells after exposure to AGEs. Retinal microvascular endothelial cells were exposed to either AGE-BSA, or were grown on methylglyoxal-modified laminin or Matrigel (TM) and expression of 67LR analysed by Western Blotting and RT-PCR/Southern blotting. Western blotting of plasma membrane and RT-PCR/Southern blotting revealed a significant upregulation of 67LR protein/mRNA expression after exposure to AGEs (p
Resumo:
We sought to determine if hyperglycaemia is responsible for increased retinal vascular endothelial-cell (RVEC) endocytosis in diabetes and to assess the role of nonenzymatic glycosylation in mediation of this novel endothelial-cell pathology. RVECs were propagated in media containing either 5 or 25 mmol/l glucose for up to 10 days after which they were exposed to the protein tracer horseradish peroxidase for 30 min. The level of RVEC endocytosis was quantified in intact cell monolayers by electron microscopic stereology, and in cell lysates by a simple spectrophotometric method. The effect of the nonenzymatic glycosylation inhibitors, aminoguanidine and D-lysine, on high-glucose medium induced changes in RVEC endocytosis was tested by inclusion of these agents in the culture medium. RVECs exposed to 25 mmol/l glucose showed a stepwise increase in endocytosis of horseradish peroxidase culminating in a two- to threefold increase after 10 days. Endocytosis returned to normal levels after a further 10 days in 5 mmol/l glucose medium. The increase in RVEC endocytosis was markedly reduced, but not completely normalised, by aminoguanidine and D-lysine. Exposure of cultured RVECs to 25 mmol/l glucose causes an increase in endocytosis of similar magnitude to that experienced by RVEC in early diabetes, and implicates hyperglycaemia in the latter situation. A significant component of the increase in RVEC endocytosis appears to be mediated by nonenzymatic glycosylation.
Resumo:
A clinical trial using human embryonic stem cell (hESC) therapy for an inherited retinal degenerative disease is about to commence. The Advanced Cell Technology (ACT) trial will treat patients with Stargardt's macular dystrophy using transplanted retinal pigment epithelium derived from hESCs. Currently, no effective treatment is available for Stargardt's disease so a stem cell-based therapy that can slow progression of this blinding condition could represent a significant breakthrough. While there are some hurdles to clear, the ACT trial is a fine example of translational research that could eventually pave the way for a range of stem cell therapies for the retina and other tissues.
Resumo:
The retinal vascular endothelium is essential for angiogenesis and is involved in maintaining barrier selectivity and vascular tone. The aim of this study was to identify and quantify microRNAs and other small regulatory non-coding RNAs (ncRNAs) which may regulate these crucial functions. Primary bovine retinal microvascular endothelial cells (RMECs) provide a well-characterized in vitro system for studying angiogenesis. RNA extracted from RMECs was used to prepare a small RNA library for deep sequencing (Illumina Genome Analyzer). A total of 6.8 million reads were mapped to 250 known microRNAs in miRBase (release 16). In many cases, the most frequent isomiR differed from the sequence reported in miRBase. In addition, five novel microRNAs, 13 novel bovine orthologs of known human microRNAs and multiple new members of the miR-2284/2285 family were detected. Several similar to 30 nucleotide sno-miRNAs were identified, with the most highly expressed being derived from snoRNA U78. Highly expressed microRNAs previously associated with endothelial cells included miR-126 and miR-378, but the most highly expressed was miR-21, comprising more than one-third of all mapped reads. Inhibition of miR-21 with an LNA inhibitor significantly reduced proliferation, migration, and tube-forming capacity of RMECs. The independence from prior sequence knowledge provided by deep sequencing facilitates analysis of novel microRNAs and other small RNAs. This approach also enables quantitative evaluation of microRNA expression, which has highlighted the predominance of a small number of microRNAs in RMECs. Knockdown of miR-21 suggests a role for this microRNA in regulation of angiogenesis in the retinal microvasculature. J. Cell. Biochem. 113: 20982111, 2012. (C) 2012 Wiley Periodicals, Inc.