819 resultados para relay filtering
Resumo:
Collaborative filtering is regarded as one of the most promising recommendation algorithms. The item-based approaches for collaborative filtering identify the similarity between two items by comparing users' ratings on them. In these approaches, ratings produced at different times are weighted equally. That is to say, changes in user purchase interest are not taken into consideration. For example, an item that was rated recently by a user should have a bigger impact on the prediction of future user behaviour than an item that was rated a long time ago. In this paper, we present a novel algorithm to compute the time weights for different items in a manner that will assign a decreasing weight to old data. More specifically, the users' purchase habits vary. Even the same user has quite different attitudes towards different items. Our proposed algorithm uses clustering to discriminate between different kinds of items. To each item cluster, we trace each user's purchase interest change and introduce a personalized decay factor according to the user own purchase behaviour. Empirical studies have shown that our new algorithm substantially improves the precision of item-based collaborative filtering without introducing higher order computational complexity.
Resumo:
In recent years many real time applications need to handle data streams. We consider the distributed environments in which remote data sources keep on collecting data from real world or from other data sources, and continuously push the data to a central stream processor. In these kinds of environments, significant communication is induced by the transmitting of rapid, high-volume and time-varying data streams. At the same time, the computing overhead at the central processor is also incurred. In this paper, we develop a novel filter approach, called DTFilter approach, for evaluating the windowed distinct queries in such a distributed system. DTFilter approach is based on the searching algorithm using a data structure of two height-balanced trees, and it avoids transmitting duplicate items in data streams, thus lots of network resources are saved. In addition, theoretical analysis of the time spent in performing the search, and of the amount of memory needed is provided. Extensive experiments also show that DTFilter approach owns high performance.
Resumo:
The paper describes two new transport layer (TCP) options and an expanded transport layer queuing strategy that facilitate three functions that are fundamental to the dispatching-based clustered service. A transport layer option has been developed to facilitate. the use of client wait time data within the service request processing of the cluster. A second transport layer option has been developed to facilitate the redirection of service requests by the cluster dispatcher to the cluster processing member. An expanded transport layer service request queuing strategy facilitates the trust based filtering of incoming service requests so that a graceful degradation of service delivery may be achieved during periods of overload - most dramatically evidenced by distributed denial of service attacks against the clustered service. We describe how these new options and queues have been implemented and successfully tested within the transport layer of the Linux kernel.
Resumo:
Edges are key points of information in visual scenes. One important class of models supposes that edges correspond to the steepest parts of the luminance profile, implying that they can be found as peaks and troughs in the response of a gradient (1st derivative) filter, or as zero-crossings in the 2nd derivative (ZCs). We tested those ideas using a stimulus that has no local peaks of gradient and no ZCs, at any scale. The stimulus profile is analogous to the Mach ramp, but it is the luminance gradient (not the absolute luminance) that increases as a linear ramp between two plateaux; the luminance profile is a blurred triangle-wave. For all image-blurs tested, observers marked edges at or close to the corner points in the gradient profile, even though these were not gradient maxima. These Mach edges correspond to peaks and troughs in the 3rd derivative. Thus Mach edges are inconsistent with many standard edge-detection schemes, but are nicely predicted by a recent model that finds edge points with a 2-stage sequence of 1st then 2nd derivative operators, each followed by a half-wave rectifier.
Resumo:
How does the brain combine spatio-temporal signals from the two eyes? We quantified binocular summation as the improvement in 2AFC contrast sensitivity for flickering gratings seen by two eyes compared with one. Binocular gratings in-phase showed sensitivity up to 1.8 times higher, suggesting nearly linear summation of contrasts. The binocular advantage decreased to 1.4 at lower spatial and higher temporal frequencies (0.25 cycle deg-1, 30 Hz). Dichoptic, antiphase gratings showed only a small binocular advantage, by a factor of 1.1 to 1.2, but no evidence of cancellation. We present a signal-processing model to account for the contrast-sensitivity functions and the pattern of binocular summation. It has linear sustained and transient temporal filters, nonlinear transduction, and half-wave rectification that creates ON and OFF channels. Binocular summation occurs separately within ON and OFF channels, thus explaining the phase-specific binocular advantage. The model also accounts for earlier findings on detection of brief antiphase flashes and the surprising finding that dichoptic antiphase flicker is seen as frequency-doubled (Cavonius et al, 1992 Ophthalmic and Physiological Optics 12 153 - 156). [Supported by EPSRC project GR/S74515/01].
Resumo:
We studied the visual mechanisms that encode edge blur in images. Our previous work suggested that the visual system spatially differentiates the luminance profile twice to create the `signature' of the edge, and then evaluates the spatial scale of this signature profile by applying Gaussian derivative templates of different sizes. The scale of the best-fitting template indicates the blur of the edge. In blur-matching experiments, a staircase procedure was used to adjust the blur of a comparison edge (40% contrast, 0.3 s duration) until it appeared to match the blur of test edges at different contrasts (5% - 40%) and blurs (6 - 32 min of arc). Results showed that lower-contrast edges looked progressively sharper. We also added a linear luminance gradient to blurred test edges. When the added gradient was of opposite polarity to the edge gradient, it made the edge look progressively sharper. Both effects can be explained quantitatively by the action of a half-wave rectifying nonlinearity that sits between the first and second (linear) differentiating stages. This rectifier was introduced to account for a range of other effects on perceived blur (Barbieri-Hesse and Georgeson, 2002 Perception 31 Supplement, 54), but it readily predicts the influence of the negative ramp. The effect of contrast arises because the rectifier has a threshold: it not only suppresses negative values but also small positive values. At low contrasts, more of the gradient profile falls below threshold and its effective spatial scale shrinks in size, leading to perceived sharpening.
Resumo:
We studied the visual mechanisms that encode edge blur in images. Our previous work suggested that the visual system spatially differentiates the luminance profile twice to create the 'signature' of the edge, and then evaluates the spatial scale of this signature profile by applying Gaussian derivative templates of different sizes. The scale of the best-fitting template indicates the blur of the edge. In blur-matching experiments, a staircase procedure was used to adjust the blur of a comparison edge (40% contrast, 0.3 s duration) until it appeared to match the blur of test edges at different contrasts (5% - 40%) and blurs (6 - 32 min of arc). Results showed that lower-contrast edges looked progressively sharper.We also added a linear luminance gradient to blurred test edges. When the added gradient was of opposite polarity to the edge gradient, it made the edge look progressively sharper. Both effects can be explained quantitatively by the action of a half-wave rectifying nonlinearity that sits between the first and second (linear) differentiating stages. This rectifier was introduced to account for a range of other effects on perceived blur (Barbieri-Hesse and Georgeson, 2002 Perception 31 Supplement, 54), but it readily predicts the influence of the negative ramp. The effect of contrast arises because the rectifier has a threshold: it not only suppresses negative values but also small positive values. At low contrasts, more of the gradient profile falls below threshold and its effective spatial scale shrinks in size, leading to perceived sharpening.
Resumo:
Marr's work offered guidelines on how to investigate vision (the theory - algorithm - implementation distinction), as well as specific proposals on how vision is done. Many of the latter have inevitably been superseded, but the approach was inspirational and remains so. Marr saw the computational study of vision as tightly linked to psychophysics and neurophysiology, but the last twenty years have seen some weakening of that integration. Because feature detection is a key stage in early human vision, we have returned to basic questions about representation of edges at coarse and fine scales. We describe an explicit model in the spirit of the primal sketch, but tightly constrained by psychophysical data. Results from two tasks (location-marking and blur-matching) point strongly to the central role played by second-derivative operators, as proposed by Marr and Hildreth. Edge location and blur are evaluated by finding the location and scale of the Gaussian-derivative `template' that best matches the second-derivative profile (`signature') of the edge. The system is scale-invariant, and accurately predicts blur-matching data for a wide variety of 1-D and 2-D images. By finding the best-fitting scale, it implements a form of local scale selection and circumvents the knotty problem of integrating filter outputs across scales. [Supported by BBSRC and the Wellcome Trust]
Resumo:
The microwave photonic response of a superstructured fiber Bragg grating is investigated. A bandpass response is achieved with the optical taps controlled by the combination of superstructured fiber grating characteristics and fiber dispersion. A rejection level of >45 dB is demonstrated.
Resumo:
In Information Filtering (IF) a user may be interested in several topics in parallel. But IF systems have been built on representational models derived from Information Retrieval and Text Categorization, which assume independence between terms. The linearity of these models results in user profiles that can only represent one topic of interest. We present a methodology that takes into account term dependencies to construct a single profile representation for multiple topics, in the form of a hierarchical term network. We also introduce a series of non-linear functions for evaluating documents against the profile. Initial experiments produced positive results.
Resumo:
Perception of Mach bands may be explained by spatial filtering ('lateral inhibition') that can be approximated by 2nd derivative computation, and several alternative models have been proposed. To distinguish between them, we used a novel set of ‘generalised Gaussian’ images, in which the sharp ramp-plateau junction of the Mach ramp was replaced by smoother transitions. The images ranged from a slightly blurred Mach ramp to a Gaussian edge and beyond, and also included a sine-wave edge. The probability of seeing Mach Bands increased with the (relative) sharpness of the junction, but was largely independent of absolute spatial scale. These data did not fit the predictions of MIRAGE, nor 2nd derivative computation at a single fine scale. In experiment 2, observers used a cursor to mark features on the same set of images. Data on perceived position of Mach bands did not support the local energy model. Perceived width of Mach bands was poorly explained by a single-scale edge detection model, despite its previous success with Mach edges (Wallis & Georgeson, 2009, Vision Research, 49, 1886-1893). A more successful model used separate (odd and even) scale-space filtering for edges and bars, local peak detection to find candidate features, and the MAX operator to compare odd- and even-filter response maps (Georgeson, VSS 2006, Journal of Vision 6(6), 191a). Mach bands are seen when there is a local peak in the even-filter (bar) response map, AND that peak value exceeds corresponding responses in the odd-filter (edge) maps.