918 resultados para reduction of organic compounds


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this master's thesis is to develop a two-dimensional drift-di usion model, which describes charge transport in organic solar cells. The main bene t of a two-dimensional model compared to a one-dimensional one is the inclusion of the nanoscale morphology of the active layer of a bulk heterojunction solar cell. The developed model was used to study recombination dynamics at the donor-acceptor interface. In some cases, it was possible to determine e ective parameters, which reproduce the results of the two-dimensional model in the one-dimensional case. A summary of the theory of charge transport in semiconductors was presented and discussed in the context of organic materials. Additionally, the normalization and discretization procedures required to nd a numerical solution to the charge transport problem were outlined. The charge transport problem was solved by implementing an iterative scheme called successive over-relaxation. The obtained solution is given as position-dependent electric potential, free charge carrier concentrations and current densities in the active layer. An interfacial layer, separating the pure phases, was introduced in order to describe charge dynamics occurring at the interface between the donor and acceptor. For simplicity, an e ective generation of free charge carriers in the interfacial layer was implemented. The pure phases simply act as transport layers for the photogenerated charges. Langevin recombination was assumed in the two-dimensional model and an analysis of the apparent recombination rate in the one-dimensional case is presented. The recombination rate in a two-dimensional model is seen to e ectively look like reduced Langevin recombination at open circuit. Replicating the J-U curves obtained in the two-dimensional model is, however, not possible by introducing a constant reduction factor in the Langevin recombination rate. The impact of an acceptor domain in the pure donor phase was investigated. Two cases were considered, one where the acceptor domain is isolated and another where it is connected to the bulk of the acceptor. A comparison to the case where no isolated domains exist was done in order to quantify the observed reduction in the photocurrent. The results show that all charges generated at the isolated domain are lost to recombination, but the domain does not have a major impact on charge transport. Trap-assisted recombination at interfacial trap states was investigated, as well as the surface dipole caused by the trapped charges. A theoretical expression for the ideality factor n_id as a function of generation was derived and shown to agree with simulation data. When the theoretical expression was fitted to simulation data, no interface dipole was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to determine the ability of specifically adapted bacteria to degrade phenol and to quantify the rate of biodegradation at. Different concentrations by mixed as well as individual isolates. Regular quantitative analysis of phenolics and aerobic phenololytic heterotrophs from five different ecosystems were done during 1990-1991, and the ability of microorganisms isolated from those areas, to utilize phenol, o-cresol and orcinol was also studied. In addition, data on environmental parameters like temperature, dissolved oxygen, salinity, pH, organic carbon and nutrients were also collected during the period of study The present study is one of its first kind in natural aquatic environment and has aimed to bring out some idea about the potential phenol biodegrades in such environments where the phenol concentration is beyond permitted level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the pre—laser era it was difficult to believe that the optical properties of a medium depend upon the intensity of the radiation incident on it. The basis for this conclusion is that the electric field strength associated with the conventional light sources used before the advent of lasers was much smaller than (103 V/cm) the field sttrengths of atomic or interatomic fields (2 107 —- 10” V/cm). The radiation with such low intensity is not able to affect atomic fields to the extent of changing optical parameters. The invention of laser in 1960 was a turning point. The high degree of coherence of the laser radiation provides high spatial concentration of optical power. With the availability of the femtosecond lasers it has become possible to get extremely high peak powers 2 1013 W/cmz). At such high fields, the relationship between electric ‘polarization P and the electric field strength E ceases to be linear and several nonlinear effects begin to occur. Nonlinear absorption, a branch of nonlinear optics, refers to the interaction between radiation and matter accompanied by absorption of more than one photon. Nonlinear absorption has acquired great importance after the invention of high power lasers. One of the objectives of the present work is to investigate the nonlinear absorption processes occurring in fullerene, selected organic solvents and laser dyes. Fullerenes and laser dyes were chosen because of their highly nonlinear behaviour. Fullerenes, the most beautiful among molecules, offer fascinating field of research owinglto their significant structural properties. As toluene, benzene and carbon disulphide are themost widely used solvents for fullerenes, it seems important to study the nonlinear properties of these liquids as well. Like fullerenes, laser dyes also possess highly delocalized 7r electrons which are responsible for their nonlinear absorption. Dye lasers were the fulfillment of an experimenter’s pipe dream - to have a laser that is easily tunable over a wide range of wavelengths. A better understandingof the photophysical properties of laser dyes can significantly enhance the development and technology of dye lasers. We studied the nonlinear absorption properties of two rhodamine dyes to have some insight into their nonlinear optical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cochin estuarine system is among the most productive aquatic environment along the Southwest coast of India, exhibits unique ecological features and possess greater socioeconomic relevance. Serious investigations carried out during the past decades on the hydro biogeochemical variables pointed out variations in the health and ecological functioning of this ecosystem. Characterisation of organic matter in the estuary has been attempted in many investigations. But detailed studies covering the degradation state of organic matter using molecular level approach is not attempted. The thesis entitled Provenance, Isolation and Characterisation of Organic Matter in the Cochin Estuarine Sediment-“ A Diagenetic Amino Acid Marker Scenario” is an integrated approach to evaluate the source, quantity, quality, and degradation state of the organic matter in the surface sediments of Cochin estuarine system with the combined application of bulk and molecular level tools. Sediment and water samples from nine stations situated at Cochin estuary were collected in five seasonal sampling campaigns, for the biogeochemical assessment and their distribution pattern of sedimentary organic matter. The sampling seasons were described and abbreviated as follows: April- 2009 (pre monsoon: PRM09), August-2009 (monsoon: MON09), January-2010 (post monsoon: POM09), April-2010 (pre monsoon: PRM10) and September- 2012 (monsoon: MON12). In order to evaluate the general environmental conditions of the estuary, water samples were analysed for water quality parameters, chlorophyll pigments and nutrients by standard methods. Investigations suggested the fact that hydrographical variables and nutrients in Cochin estuary supports diverse species of flora and fauna. Moreover the sedimentary variables such as pH, Eh, texture, TOC, fractions of nitrogen and phosphorous were determined to assess the general geochemical setting as well as redox status. The periodically fluctuating oxic/ anoxic conditions and texture serve as the most significant variables controlling other variables of the aquatic environment. The organic matter in estuary comprise of a complex mixture of autochthonous as well as allochthonous materials. Autochthonous input is limited or enhanced by the nutrient elements like N and P (in their various fractions), used as a tool to evaluate their bioavailability. Bulk parameter approach like biochemical composition, stoichiometric elemental ratios and stable carbon isotope ratio was also employed to assess the quality and quantity of sedimentary organic matter in the study area. Molecular level charactersation of free sugars and amino acids were carried out by liquid chromatographic techniques. Carbohydrates are the products of primary production and their occurrence in sediments as free sugars can provide information on the estuarine productivity. Amino acid biogeochemistry provided implications on the system productivity, nature of organic matter as well as degradation status of the sedimentary organic matter in the study area. The predominance of carbohydrates over protein indicated faster mineralisation of proteinaceous organic matter in sediments and the estuary behaves as a detrital trap for the accumulation of aged organic matter. The higher lipid content and LPD/CHO ratio pointed towards the better food quality that supports benthic fauna and better accumulation of lipid compounds in the sedimentary environment. Allochthonous addition of carbohydrates via terrestrial run off was responsible for the lower PRT/CHO ratio estimated in thesediments and the lower ratios also denoted a detrital heterotrophic environment. Biopolymeric carbon and the algal contribution to BPC provided important information on the better understanding the trophic state of the estuarine system and the higher values of chlorophyll-a to phaeophytin ratio indicated deposition of phytoplankton to sediment at a rapid rate. The estimated TOC/TN ratios implied the combined input of both terrestrial and autochthonous organic matter to sedimentsAmong the free sugars, depleted levels of glucose in sediments in most of the stations and abundance of mannose at station S5 was observed during the present investigation. Among aldohexoses, concentration of galactose was found to be higher in most of the stationsRelative abundance of AAs in the estuarine sediments based on seasons followed the trend: PRM09-Leucine > Phenylalanine > Argine > Lysine, MON09-Lysine > Aspartic acid > Histidine > Tyrosine > Phenylalanine, POM09-Lysine > Histadine > Phenyalanine > Leucine > Methionine > Serine > Proline > Aspartic acid, PRM10-Valine > Aspartic acid > Histidine > Phenylalanine > Serine > Proline, MON12-Lysine > Phenylalanine > Aspartic acid > Histidine > Valine > Tyrsine > MethionineThe classification of study area into three zones based on salinity was employed in the present study for the sake of simplicity and generalized interpretations. The distribution of AAs in the three zones followed the trend: Fresh water zone (S1, S2):- Phenylalanine > Lysine > Aspartic acid > Methionine > Valine ῀ Leucine > Proline > Histidine > Glycine > Serine > Glutamic acid > Tyrosine > Arginine > Alanine > Threonine > Cysteine > Isoleucine. Estuarine zone (S3, S4, S5, S6):- Lysine > Aspartic acid > Phenylalanine > Leucine > Valine > Histidine > Methionine > Tyrosine > Serine > Glutamic acid > Proline > Glycine > Arginine > Alanine > Isoleucine > Cysteine > Threonine. Riverine /Industrial zone (S7, S8, S9):- Phenylalanine > Lysine > Aspartic acid > Histidine > Serine > Arginine > Tyrosine > Leucine > Methionine > Glutamic acid > Alanine > Glycine > Cysteine > Proline > Isoleucine > Threonine > Valine. The abundance of AAs like glutamic acid, aspartic acid, isoleucine, valine, tyrosine, and phenylalanine in sediments of the study area indicated freshly derived organic matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy production from biomass and the conservation of ecologically valuable grassland habitats are two important issues of agriculture today. The combination of a bioenergy production, which minimises environmental impacts and competition with food production for land with a conversion of semi-natural grasslands through new utilization alternatives for the biomass, led to the development of the IFBB process. Its basic principle is the separation of biomass into a liquid fraction (press fluid, PF) for the production of electric and thermal energy after anaerobic digestion to biogas and a solid fraction (press cake, PC) for the production of thermal energy through combustion. This study was undertaken to explore mass and energy flows as well as quality aspects of energy carriers within the IFBB process and determine their dependency on biomass-related and technical parameters. Two experiments were conducted, in which biomass from semi-natural grassland was conserved as silage and subjected to a hydrothermal conditioning and a subsequent mechanical dehydration with a screw press. Methane yield of the PF and the untreated silage was determined in anaerobic digestion experiments in batch fermenters at 37°C with a fermentation time of 13-15 and 27-35 days for the PF and the silage, respectively. Concentrations of dry matter (DM), ash, crude protein (CP), crude fibre (CF), ether extract (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent ligning (ADL) and elements (K, Mg, Ca, Cl, N, S, P, C, H, N) were determined in the untreated biomass and the PC. Higher heating value (HHV) and ash softening temperature (AST) were calculated based on elemental concentration. Chemical composition of the PF and mass flows of all plant compounds into the PF were calculated. In the first experiment, biomass from five different semi-natural grassland swards (Arrhenaterion I and II, Caricion fuscae, Filipendulion ulmariae, Polygono-Trisetion) was harvested at one late sampling (19 July or 31 August) and ensiled. Each silage was subjected to three different temperature treatments (5°C, 60°C, 80°C) during hydrothermal conditioning. Based on observed methane yields and HHV as energy output parameters as well as literature-based and observed energy input parameters, energy and green house gas (GHG) balances were calculated for IFBB and two reference conversion processes, whole-crop digestion of untreated silage (WCD) and combustion of hay (CH). In the second experiment, biomass from one single semi-natural grassland sward (Arrhenaterion) was harvested at eight consecutive dates (27/04, 02/05, 09/05, 16/05, 24/05, 31/05, 11/06, 21/06) and ensiled. Each silage was subjected to six different treatments (no hydrothermal conditioning and hydrothermal conditioning at 10°C, 30°C, 50°C, 70°C, 90°C). Energy balance was calculated for IFBB and WCD. Multiple regression models were developed to predict mass flows, concentrations of elements in the PC, concentration of organic compounds in the PF and energy conversion efficiency of the IFBB process from temperature of hydrothermal conditioning as well as NDF and DM concentration in the silage. Results showed a relative reduction of ash and all elements detrimental for combustion in the PC compared to the untreated biomass of 20-90%. Reduction was highest for K and Cl and lowest for N. HHV of PC and untreated biomass were in a comparable range (17.8-19.5 MJ kg-1 DM), but AST of PC was higher (1156-1254°C). Methane yields of PF were higher compared to those of WCD when the biomass was harvested late (end of May and later) and in a comparable range when the biomass was harvested early and ranged from 332 to 458 LN kg-1 VS. Regarding energy and GHG balances, IFBB, with a net energy yield of 11.9-14.1 MWh ha-1, a conversion efficiency of 0.43-0.51, and GHG mitigation of 3.6-4.4 t CO2eq ha-1, performed better than WCD, but worse than CH. WCD produces thermal and electric energy with low efficiency, CH produces only thermal energy with a low quality solid fuel with high efficiency, IFBB produces thermal and electric energy with a solid fuel of high quality with medium efficiency. Regression models were able to predict target parameters with high accuracy (R2=0.70-0.99). The influence of increasing temperature of hydrothermal conditioning was an increase of mass flows, a decrease of element concentrations in the PC and a differing effect on energy conversion efficiency. The influence of increasing NDF concentration of the silage was a differing effect on mass flows, a decrease of element concentrations in the PC and an increase of energy conversion efficiency. The influence of increasing DM concentration of the silage was a decrease of mass flows, an increase of element concentrations in the PC and an increase of energy conversion efficiency. Based on the models an optimised IFBB process would be obtained with a medium temperature of hydrothermal conditioning (50°C), high NDF concentrations in the silage and medium DM concentrations of the silage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, optical gain measurement setup based on variable stripe length method is designed, implemented and improved. The setup is characterized using inorganic and organic samples. The optical gain of spiro-quaterphenyl is calculated and compared with measurements from the setup. Films with various thicknesses of spiro-quaterphenyl, methoxy-spiro-quaterphenyl and phenoxy-spiro-quaterphenyl are deposited by a vacuum vapor deposition technique forming asymmetric slab waveguides. The optical properties, laser emission threshold, optical gain and loss coefficient for these films are measured. Additionally, the photodegradation during pumping process is investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic materials such as compost are often proposed as suitable materials for the remediation of contaminated brownfield sites intended for soft end-use. In addition to vitalising the soil, they are also believed to immobilise metals thereby breaking contaminant-receptor pathways and reducing the ecotoxicity of the contaminants. However, some research has demonstrated contradictory effects between composts on metal immobilisation. In the present study, four different composts and a liming product containing organic matter (LimeX70) were tested to examine both their metal retention and toxicity reduction capabilities on three different metal contaminated soils. Leaching tests, a plant growth test with Greek cress (Lepidium sativum), an earthworm (Eisenia fetida) survival and condition test and a bacterial toxicity test using Vibrio fischeri were carried out. The leaching test results showed that spent mushroom compost caused an increase in metal concentration in the leachates, while LimeX70 caused a decrease. The variation in behaviour between different amendments for each soil was high, so a generic conclusion could not be drawn. Toxicity tests showed significant reduction of metal bioavailability and toxicity for Greek cress, earthworms and bacteria. The results also suggest that more research should be undertaken to understand the mechanisms involved in metal complexation using different types of organic matter, in order to optimise the use of organic materials like compost for soil remediation. Crown Copyright (C) 2007 Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation into the phylogenetic variation of plant tolerance and the root and shoot uptake of organic contaminants was undertaken. The aim was to determine if particular families or genera were tolerant of, or accumulated organic pollutants. Data were collected from sixty-nine studies. The variation between experiments was accounted for using a residual maximum likelihood analysis to approximate means for individual taxa. A nested ANOVA was subsequently used to determine differences at a number of differing phylogenetic levels. Significant differences were observed at a number of phylogenetic levels for the tolerance to TPH, the root concentration factor and the shoot concentration factor. There was no correlation between the uptake of organic pollutants and that of heavy metals. The data indicate that plant phylogeny is an important influence on both the plant tolerance and uptake of organic pollutants. If this study can be expanded, such information can be used when designing plantings for phytoremediation or risk reduction during the restoration of contaminated sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Public concern over impacts of chemicals in plant and animal production on health and the environment has led to increased demand for organic produce, which is usually promoted and often perceived as containing fewer contaminants, more nutrients, and being positive for the environment. These benefits are difficult to quantify, and potential environmental impacts on such benefits have not been widely studied. This book addresses these key points, examining factors such as the role of certain nutrients in prevention and promotion of chronic disease, potential health benefits of bioactive compounds in plants, the prevalence of food-borne pesticides and pathogens and how both local and global environmental factors may affect any differences between organic and conventionally produced food. This book is an essential resource for researchers and students in human health and nutrition, environmental science, agriculture and organic farming. Main Contents 1. Organic farming and food systems: definitions and key characteristics. 2. The health benefits of n-3 fatty acids and their concentrations in organic and conventional animal-derived foods. 3. Environmental impacts on n-3 content of foods from ruminant animals. 4. Health benefits and selenium content of organic vs conventional foods. 5. Environmental impacts concerning the selenium content of foods. 6. Contaminants in organic and conventional food: the missing link between contaminant levels and health effects. 7. Mycotoxins in organic and conventional foods and effects of the environment. 8. Human pathogens in organic and conventional foods and effects of the environment. 9. What does consumer science tell us about organic foods? 10. The beneficial effects of dietary flavonoids: sources, bioavailability and biological functions. 11. Environmental regulation of flavonoid biosynthesis. 12. Nitrates in the human diet. 13. Impacts of environment and management on nitrate in vegetables and water. 14. Effects of the environment on the nutritional quality and safety of organically produced foods: Round-up and summary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic materials such as compost are often proposed as suitable materials for the remediation of contaminated brownfield sites intended for soft end-use. In addition to vitalising the soil, they are also believed to immobilise metals thereby breaking contaminant-receptor pathways and reducing the ecotoxicity of the contaminants. However, some research has demonstrated contradictory effects between composts on metal immobilisation. In the present study, four different composts and a liming product containing organic matter (LimeX70) were tested to examine both their metal retention and toxicity reduction capabilities on three different metal contaminated soils. Leaching tests, a plant growth test with Greek cress (Lepidium sativum), an earthworm (Eisenia fetida) survival and condition test and a bacterial toxicity test using Vibrio fischeri were carried out. The leaching test results showed that spent mushroom compost caused an increase in metal concentration in the leachates, while LimeX70 caused a decrease. The variation in behaviour between different amendments for each soil was high, so a generic conclusion could not be drawn. Toxicity tests showed significant reduction of metal bioavailability and toxicity for Greek cress, earthworms and bacteria. The results also suggest that more research should be undertaken to understand the mechanisms involved in metal complexation using different types of organic matter, in order to optimise the use of organic materials like compost for soil remediation. Crown Copyright (C) 2007 Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conformational changes within the human immunodeficiency virus-1 (HIV-1) surface glycoprotein gp120 result from binding to the lymphocyte surface receptors and trigger gp41-mediated virus/cell membrane fusion. The triggering of fusion requires cleavage of two of the nine disulfide bonds of gp120 by a cell-surface protein disulfide-isomerase (PDI). Soluble glycosaminoglycans such as heparin and heparan sulfate bind gp120 via V3 and, possibly, a CD4-induced domain. They exert anti-HIV activity by interfering with the HIV envelope glycoprotein ( Env)/cell-surface interaction. Env also binds cell-surface glycosaminoglycans. Here, using surface plasmon resonance, we observed an inverse relationship between heparin binding by gp120 and its thiol content. In vitro, and in conditions in which gp120 could bind CD4, heparin and heparan sulfate reduced PDI-mediated gp120 reduction by approximately 80%. Interaction of Env with the surface of lymphocytes treated using sodium chlorate, an inhibitor of glycosaminoglycan synthesis, led to gp120 reduction. We conclude that besides their capacity to block Env/cell interaction, soluble glycosaminoglycans can effect anti-HIV activity via interference with PDI- mediated gp120 reduction. In contrast, their presence at the cell surface is dispensable for Env reduction during the course of interaction with the lymphocyte surface. This work suggests that the reduction of exofacial proteins in various diseases can be inhibited by compounds targeting the substrates ( not by targeting PDI, as is usually done), and that glycosaminoglycans that primarily protect proteins by preserving them from proteolysis also have a role in preventing reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soil−air−plant pathway is potentially important in the vegetative accumulation of organic pollutants from contaminated soils. While a number of qualitative frameworks exist for the prediction of plant accumulation of organic chemicals by this pathway, there are few quantitative models that incorporate this pathway. The aim of the present study was to produce a model that included this pathway and could quantify its contribution to the total plant contamination for a range of organic pollutants. A new model was developed from three submodels for the processes controlling plant contamination via this pathway: aerial deposition, soil volatilization, and systemic translocation. Using the combined model, the soil−air−plant pathway was predicted to account for a significant proportion of the total shoot contamination for those compounds with log KOA > 9 and log KAW < −3. For those pollutants with log KOA < 9 and log KAW > −3 there was a higher deposition of pollutant via the soil−air−plant pathway than for those chemicals with log KOA > 9 and log KAW < −3, but this was an insignificant proportion of the total shoot contamination because of the higher mobility of these compounds via the soil−root−shoot pathway. The incorporation of the soil−air−plant pathway into the plant uptake model did not significantly improve the prediction of the contamination of vegetation from polluted soils when compared across a range of studies. This was a result of the high variability between the experimental studies where the bioconcentration factors varied by 2 orders of magnitude at an equivalent log KOA. One potential reason for this is the background air concentration of the pollutants under study. It was found background air concentrations would dominate those from soil volatilization in many situations unless there was a soil hot spot of contamination, i.e., >100 mg kg−1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of a dithiol-functionalized pyrene derivative is reported, together with studies of interactions between this receptor (and other related pyrenes) and nitroaromatic compounds (NACs), in both solution and in the solid state. Spectroscopic analysis in solution and X-ray crystallographic analysis of cocrystals of pyrene and NACs in the solid state indicate that supramolecular interactions lead to the formation of defined pi-pi stacked complexes. The dithiolfunctionalized pyrene derivative can be used to modify the surface of a gold quartz crystal microbalance (QCM) to create a unique π-electron rich surface, which is able to interact with electron poor aromatic compounds. For example, exposure of the modified QCM surface to the nitroaromatic compound 2,4-dinitrotoluene (DNT) in solution results in a reduction in the resonant frequency of the QCM as a result of supramolecular interactions between the electron-rich pyrenyl surface layer and the electron-poor DNT molecules. These results suggest the potential use of such modified QCM surfaces for the detection of explosive NACs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The type and quantity of fertilizer supplied to a crop will differ between organic and conventional farming practices. Altering the type of fertilizer a plant is provided with can influence a plant’s foliar nitrogen levels, as well as the composition and concentration of defence compounds, such as glucosinolates. Many natural enemies of insect herbivores can respond to headspace volatiles emitted by the herbivores’ host plant in response to herbivory. We propose that manipulating fertilizer type may also influence the headspace volatile profiles of plants, and as a result, the tritrophic interactions that occur between plants, their insect pests and those pests’ natural enemies. Here, we investigate a tritrophic system consisting of cabbage plants, Brassica oleracea, a parasitoid, Diaeretiella rapae, and one of its hosts, the specialist cabbage aphid Brevicoryne brassicae. Brassica oleracea plants were provided with either no additional fertilization or one of three types of fertilizer: Nitram (ammonium nitrate), John Innes base or organic chicken manure. We investigated whether these changes would alter the rate of parasitism of aphids on those plants and whether any differences in parasitism could be explained by differences in attractivity of the plants to D. rapae or attack rate of aphids by D. rapae. In free-choice experiments, there were significant differences in the percentage of B. brassicae parasitized by D. rapae between B. oleracea plants grown in different fertilizer treatments. In a series of dual-choice Y-tube olfactometry experiments, D. rapae females discriminated between B. brassicae-infested and undamaged plants, but parasitoids did not discriminate between similarly infested plants grown in different fertilizer treatments. Correspondingly, in attack rate experiments, there were no differences in the rate that D. rapae attacked B. brassicae on B. oleracea plants grown in different fertilizer treatments. These findings are of direct relevance to sustainable and conventional farming practices.