748 resultados para recognition of prior learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Burnley, M., Doust, J.H., Ball, D. and Jones, A.M. (2002) Effects of prior heavy exercise on VO2 kinetics during heavy exercise are related to changes in muscle activity. Journal of Applied Physiology 93, 167-174. RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Burnley, M, Doust, J and Jones, A (2005) Effects of Prior Warm-up Regime on Severe-Intensity Cycling Performance. Medicine and Science in Sports and Exercise, 37 (5). pp. 838-845. ISSN 1530-0315 RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A framework for the simultaneous localization and recognition of dynamic hand gestures is proposed. At the core of this framework is a dynamic space-time warping (DSTW) algorithm, that aligns a pair of query and model gestures in both space and time. For every frame of the query sequence, feature detectors generate multiple hand region candidates. Dynamic programming is then used to compute both a global matching cost, which is used to recognize the query gesture, and a warping path, which aligns the query and model sequences in time, and also finds the best hand candidate region in every query frame. The proposed framework includes translation invariant recognition of gestures, a desirable property for many HCI systems. The performance of the approach is evaluated on a dataset of hand signed digits gestured by people wearing short sleeve shirts, in front of a background containing other non-hand skin-colored objects. The algorithm simultaneously localizes the gesturing hand and recognizes the hand-signed digit. Although DSTW is illustrated in a gesture recognition setting, the proposed algorithm is a general method for matching time series, that allows for multiple candidate feature vectors to be extracted at each time step.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. The 3D trajectory, occlusion, and segmentation information are utilized in extracting stabilized views of the moving object. Trajectory-guided recognition (TGR) is proposed as a new and efficient method for adaptive classification of action. The TGR approach is demonstrated using "motion history images" that are then recognized via a mixture of Gaussian classifier. The system was tested in recognizing various dynamic human outdoor activities; e.g., running, walking, roller blading, and cycling. Experiments with synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of different classification approaches is evaluated using a view-based approach for motion representation. The view-based approach uses computer vision and image processing techniques to register and process the video sequence. Two motion representations called Motion Energy Images and Motion History Image are then constructed. These representations collapse the temporal component in a way that no explicit temporal analysis or sequence matching is needed. Statistical descriptions are then computed using moment-based features and dimensionality reduction techniques. For these tests, we used 7 Hu moments, which are invariant to scale and translation. Principal Components Analysis is used to reduce the dimensionality of this representation. The system is trained using different subjects performing a set of examples of every action to be recognized. Given these samples, K-nearest neighbor, Gaussian, and Gaussian mixture classifiers are used to recognize new actions. Experiments are conducted using instances of eight human actions (i.e., eight classes) performed by seven different subjects. Comparisons in the performance among these classifiers under different conditions are analyzed and reported. Our main goals are to test this dimensionality-reduced representation of actions, and more importantly to use this representation to compare the advantages of different classification approaches in this recognition task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined 2D, 3D approach is presented that allows for robust tracking of moving people and recognition of actions. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. Low-level features are often insufficient for detection, segmentation, and tracking of non-rigid moving objects. Therefore, an improved mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. The 3D trajectory, occlusion, and segmentation information are utilized in extracting stabilized views of the moving object that are then used as input to action recognition modules. Trajectory-guided recognition (TGR) is proposed as a new and efficient method for adaptive classification of action. The TGR approach is demonstrated using "motion history images" that are then recognized via a mixture-of-Gaussians classifier. The system was tested in recognizing various dynamic human outdoor activities: running, walking, roller blading, and cycling. Experiments with real and synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much sensory-motor behavior develops through imitation, as during the learning of handwriting by children. Such complex sequential acts are broken down into distinct motor control synergies, or muscle groups, whose activities overlap in time to generate continuous, curved movements that obey an intense relation between curvature and speed. The Adaptive Vector Integration to Endpoint (AVITEWRITE) model of Grossberg and Paine (2000) proposed how such complex movements may be learned through attentive imitation. The model suggest how frontal, parietal, and motor cortical mechanisms, such as difference vector encoding, under volitional control from the basal ganglia, interact with adaptively-timed, predictive cerebellar learning during movement imitation and predictive performance. Key psycophysical and neural data about learning to make curved movements were simulated, including a decrease in writing time as learning progresses; generation of unimodal, bell-shaped velocity profiles for each movement synergy; size scaling with isochrony, and speed scaling with preservation of the letter shape and the shapes of the velocity profiles; an inverse relation between curvature and tangential velocity; and a Two-Thirds Power Law relation between angular velocity and curvature. However, the model learned from letter trajectories of only one subject, and only qualitative kinematic comparisons were made with previously published human data. The present work describes a quantitative test of AVITEWRITE through direct comparison of a corpus of human handwriting data with the model's performance when it learns by tracing human trajectories. The results show that model performance was variable across subjects, with an average correlation between the model and human data of 89+/-10%. The present data from simulations using the AVITEWRITE model highlight some of its strengths while focusing attention on areas, such as novel shape learning in children, where all models of handwriting and learning of other complex sensory-motor skills would benefit from further research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article applies a recent theory of 3-D biological vision, called FACADE Theory, to explain several percepts which Kanizsa pioneered. These include 3-D pop-out of an occluding form in front of an occluded form, leading to completion and recognition of the occluded form; 3-D transparent and opaque percepts of Kanizsa squares, with and without Varin wedges; and interactions between percepts of illusory contours, brightness, and depth in response to 2-D Kanizsa images. These explanations clarify how a partially occluded object representation can be completed for purposes of object recognition, without the completed part of the representation necessarily being seen. The theory traces these percepts to neural mechanisms that compensate for measurement uncertainty and complementarity at individual cortical processing stages by using parallel and hierarchical interactions among several cortical processing stages. These interactions are modelled by a Boundary Contour System (BCS) that generates emergent boundary segmentations and a complementary Feature Contour System (FCS) that fills-in surface representations of brightness, color, and depth. The BCS and FCS interact reciprocally with an Object Recognition System (ORS) that binds BCS boundary and FCS surface representations into attentive object representations. The BCS models the parvocellular LGN→Interblob→Interstripe→V4 cortical processing stream, the FCS models the parvocellular LGN→Blob→Thin Stripe→V4 cortical processing stream, and the ORS models inferotemporal cortex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2005-2012 IEEE.Within industrial automation systems, three-dimensional (3-D) vision provides very useful feedback information in autonomous operation of various manufacturing equipment (e.g., industrial robots, material handling devices, assembly systems, and machine tools). The hardware performance in contemporary 3-D scanning devices is suitable for online utilization. However, the bottleneck is the lack of real-time algorithms for recognition of geometric primitives (e.g., planes and natural quadrics) from a scanned point cloud. One of the most important and the most frequent geometric primitive in various engineering tasks is plane. In this paper, we propose a new fast one-pass algorithm for recognition (segmentation and fitting) of planar segments from a point cloud. To effectively segment planar regions, we exploit the orthonormality of certain wavelets to polynomial function, as well as their sensitivity to abrupt changes. After segmentation of planar regions, we estimate the parameters of corresponding planes using standard fitting procedures. For point cloud structuring, a z-buffer algorithm with mesh triangles representation in barycentric coordinates is employed. The proposed recognition method is tested and experimentally validated in several real-world case studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical learning can be used to extract the words from continuous speech. Gómez, Bion, and Mehler (Language and Cognitive Processes, 26, 212–223, 2011) proposed an online measure of statistical learning: They superimposed auditory clicks on a continuous artificial speech stream made up of a random succession of trisyllabic nonwords. Participants were instructed to detect these clicks, which could be located either within or between words. The results showed that, over the length of exposure, reaction times (RTs) increased more for within-word than for between-word clicks. This result has been accounted for by means of statistical learning of the between-word boundaries. However, even though statistical learning occurs without an intention to learn, it nevertheless requires attentional resources. Therefore, this process could be affected by a concurrent task such as click detection. In the present study, we evaluated the extent to which the click detection task indeed reflects successful statistical learning. Our results suggest that the emergence of RT differences between within- and between-word click detection is neither systematic nor related to the successful segmentation of the artificial language. Therefore, instead of being an online measure of learning, the click detection task seems to interfere with the extraction of statistical regularities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction This proposal aims, through debate within symposium to explore the student experience of e-learning. The team facilitating the discussion will draw upon their experience of an HEA funded pathfinder project, the main aim of which was to collect learner stories about their experience of using technology in their everyday learning activities at the University of Greenwich across a range of programmes, levels, locations and student groups. Method The project design responded to the growing body of student voice literature and then utilised and built upon the JISC-funded studies that focussed on understanding the learner perspectives on the role of technology in learning, namely: • the LEX study which investigated a broad spectrum of technology use by eliciting rich data about learners’ feelings, beliefs and intentions towards e-learning (Creanor et al, 2006); • the LXP studies which explored disciplinary differences in uses of technology by university students through a variety of methodologies (Conole et al, 2006). Results The symposium will be organised as a round table discussion that will be structured into three sections: • Designing an online survey tool, and the results of our survey. • Exploring student stories. • What can learned from the project and taking the findings back to enhance learning. To stimulate discussion each section will start by asking the participants to discuss and debate a particular question, this will be followed by an interactive presentation by the respective member of the project team who will share the findings of the project and invite contributions to the resulting discussion from personal perspectives. The questions are: • What is effective learning within a context of digital technology? • What are the myths and truths about the identity of today's learners? • What practical changes need to happen in order to see real change? Conclusion The final section of the symposium will invite contributions from the participants in order to collate the views and perspectives of all the participants in order to focus the discussion on the following: • The issues that have arisen as a result of the round table debates. • New speculative approaches to enhancing the student experience. • A controversial stand to the future of Higher Education teaching and learning and the role and integration of technology within that education. The symposium will provide an opportunity to explore the predictive value of Student Experience of E-Learning Laboratory (SEEL) project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Student Experience of E-learning Laboratory (SEEL) is a three year initiative that seeks to develop the University’s capacity to discover more about the impact of e-learning on our students in an attempt to narrow the gap between the digital natives and immigrants (Prensky, 2001). In its first year the project team have gathered data on the student experience of using technology in support of their learning from across the University. Initial analysis suggests we should listen more carefully to our students and may need to review some of our current practices in relation to e-learning and explore some new ways of working. In this workshop we will outline some of the findings and consider implications for our future practice.