957 resultados para pump-probe technique
Resumo:
A technique for direct real-time assessment of a distributed feedback fibre laser cavity conditions during operation is demonstrated and used to provide a cavity mode conditioning feedback mechanism to optimise output performance. Negligible wavelength drift is demonstrated over a 52 mW pump power range.
Resumo:
SINNMR (Sonically Induced Narrowing of the Nuclear Magnetic Resonance spectra of solids), is a novel technique that is being developed to enable the routine study of solids by nuclear magnetic resonance spectroscopy. SINNMR aims to narrow the broad resonances that are characteristic of solid state NMR by inducing rapid incoherent motion of solid particles suspended in a support medium, using high frequency ultrasound in the range 2-10 MHz. The width of the normal broad resonances from solids are due to incomplete averaging of several components of the total spin Hamiltonian caused by restrictions placed on molecular motion within a solid. At present Magic Angle Spinning (MAS) NMR is the classical solid state technique used to reduce line broadening, but: this has associated problems, not least of which is the appearance of many spinning side bands which confuse the spectra. It is hoped that SlNNMR will offer a simple alternative, particularly as it does not reveal spinning sidebands The fundamental question concerning whether the use of ultrasound within a cryo-magnet will cause quenching has been investigated with success, as even under the most extreme conditions of power, frequency and irradiator time, the magnet does not quench. The objective of this work is to design and construct a SINNMR probe for use in a super conducting cryo-magnet NMR spectrometer. A cell for such a probe has been constructed and incorporated into an adapted high resolution broadband probe. It has been proved that the cell is capable of causing cavitation, up to 10 MHz, by running a series of ultrasonic reactions within it and observing the reaction products. It was found that the ultrasound was causing the sample to be heated to unacceptable temperatures and this necessitated the incorporation of temperature stabilisation devices. Work has been performed on the investigation of the narrowing of the solid state 23Na spectrum of tri-sodium phosphate using high frequency ultrasound. Work has also been completed on the signal enhancement and T1 reduction of a liquid mixture and a pure compound using ultrasound. Some preliminary "bench" experiments have been completed on a novel ultrasonic device designed to help minimise sample heating. The concept involves passing the ultrasound through a temperature stabilised, liquid filled funnel that has a drum skin on the end that will enable the passage of ultrasound into the sample. Bench experiments have proved that acoustic attenuation is low and that cavitation in the liquid beyond the device is still possible.
Resumo:
Some critical aspects of a new kind of on-line measurement technique for micro and nanoscale surface measurements are described. This attempts to use spatial light-wave scanning to replace mechanical stylus scanning, and an optical fibre interferometer to replace optically bulky interferometers for measuring the surfaces. The basic principle is based on measuring the phase shift of a reflected optical signal. Wavelength-division-multiplexing and fibre Bragg grating techniques are used to carry out wavelength-to-field transformation and phase-to-depth detection, allowing a large dynamic measurement ratio (range/resolution) and high signal-to-noise ratio with remote access. In effect the paper consists of two parts: multiplexed fibre interferometry and remote on-machine surface detection sensor (an optical dispersive probe). This paper aims to investigate the metrology properties of a multiplexed fibre interferometer and to verify its feasibility by both theoretical and experimental studies. Two types of optical probes, using a dispersive prism and a blazed grating, respectively, are introduced to realize wavelength-to-spatial scanning.
Resumo:
This thesis describes an analytical and experimental study to determine the mechanical characteristics of the pump mounting, bell housing type. For numerical purposes, the mount was modelled as a thin circular cylindrical shell with cutouts, stiffened with rings and stringers; the boundary conditions were considered to be either clamped-free or clamped-supporting rigid heavy mass. The theoretical study was concerned with both the static response and the free vibration characteristics of the mount. The approach was based on the Rayleigh-Ritz approximation technique using beam characteristic (axial) and trigonometric (Circumferential) functions in the displacement series, in association with the Love - Timoshenko thin shell theory. Studies were carried out to determine the effect of the supported heavy mass on the static response, frequencies and mode shapes; in addition, the effects of stringers, rings and cutouts on vibration characteristics were investigated. The static and dynamic formulations were both implemented on the Hewlett Packard 9845 computer. The experimental study was conducted to evaluate the results of the natural frequencies and mode shapes, predicted numerically. In the experimental part, a digital computer was used as an experiment controller, which allowed accurate and quick results. The following observations were made: 1. Good agreements were obtained with the results of other investigators. 2. Satisfactory agreement was achieved between the theoretical and experimental results. 3. Rings coupled the axial modal functions of the plain cylinder and tended to increase frequencies, except for the torsion modes where frequencies were reduced. Stringers coupled the circumferential modal functions and tended to decrease frequencies. The effect of rings was stronger than that of stringers. 4. Cutouts tended to reduce frequencies; in general, but this depends on the location of the cutouts; if they are near the free edge then an increase in frequencies is obtained. Cutouts coupled both axial and circumferential modal functions. 5. The supported heavy mass had similar effects to those of the rings, but in an exaggerated manner, particularly in the reduction of torsion frequencies. 6. The method of analysis was found to be a convenient analytical tool for estimating the overall behaviour of the shell with cutouts.
Resumo:
Spray drying is widely used to manufacture many powdered products, with the drying process parameters having significant influence over the final powder's surface properties and propensity for unwanted caking. In most cases caking experiments are performed on bulk powders, but especially in multi-component powders, it is often difficult to interpret these results, where interaction effects between particles can be complex. Here the technique of scanning probe microscopy is used to characterize the nanoscale properties of spray dried model milk powders in order to investigate the surface properties of the powders.
Resumo:
Some critical aspects of a new kind of on-line measurement technique for micro and nanoscale surface measurements are described. This attempts to use spatial light-wave scanning to replace mechanical stylus scanning, and an optical fibre interferometer to replace optically bulky interferometers for measuring the surfaces. The basic principle is based on measuring the phase shift of a reflected optical signal. Wavelength-division-multiplexing and fibre Bragg grating techniques are used to carry out wavelength-to-field transformation and phase-to-depth detection, allowing a large dynamic measurement ratio (range/resolution) and high signal-to-noise ratio with remote access. In effect the paper consists of two parts: multiplexed fibre interferometry and remote on-machine surface detection sensor (an optical dispersive probe). This paper aims to investigate the metrology properties of a multiplexed fibre interferometer and to verify its feasibility by both theoretical and experimental studies. Two types of optical probes, using a dispersive prism and a blazed grating, respectively, are introduced to realize wavelength-to-spatial scanning.
Resumo:
A technique for direct real-time assessment of a distributed feedback fibre laser cavity conditions during operation is demonstrated and used to provide a cavity mode conditioning feedback mechanism to optimise output performance. Negligible wavelength drift is demonstrated over a 52 mW pump power range.
Resumo:
We present the first spatial scanning system using wavelength-spatial transformation of chromatic dispersion device. Optical probe used in fiber optic interferometer for surface measurement is demonstrated by using diffraction grating and wavelength scanning technique.
Resumo:
This work presents the development of an in-plane vertical micro-coaxial probe using bulk micromachining technique for high frequency material characterization. The coaxial probe was fabricated in a silicon substrate by standard photolithography and a deep reactive ion etching (DRIE) technique. The through-hole structure in the form of a coaxial probe was etched and metalized with a diluted silver paste. A co-planar waveguide configuration was integrated with the design to characterize the probe. The electrical and RF characteristics of the coaxial probe were determined by simulating the probe design in Ansoft's High Frequency Structure Simulator (HFSS). The reflection coefficient and transducer gain performance of the probe was measured up to 65 GHz using a vector network analyzer (VNA). The probe demonstrated excellent results over a wide frequency band, indicating its ability to integrate with millimeter wave packaging systems as well as characterize unknown materials at high frequencies. The probe was then placed in contact with 3 materials where their unknown permittivities were determined. To accomplish this, the coaxial probe was placed in contact with the material under test and electromagnetic waves were directed to the surface using the VNA, where its reflection coefficient was then determined over a wide frequency band from dc-to -65GHz. Next, the permittivity of each material was deduced from its measured reflection coefficients using a cross ratio invariance coding technique. The permittivity results obtained when measuring the reflection coefficient data were compared to simulated permittivity results and agreed well. These results validate the use of the micro-coaxial probe to characterize the permittivity of unknown materials at high frequencies up to 65GHz.
Resumo:
Optical nanofibres are ultrathin optical fibres with a waist diameter typically less than the wavelength of light being guided through them. Cold atoms can couple to the evanescent field of the nanofibre-guided modes and such systems are emerging as promising technologies for the development of atom-photon hybrid quantum devices. Atoms within the evanescent field region of an optical nanofibre can be probed by sending near or on-resonant light through the fibre; however, the probe light can detrimentally affect the properties of the atoms. In this paper, we report on the modification of the local temperature of laser-cooled 87Rb atoms in a magneto-optical trap centred around an optical nanofibre when near-resonant probe light propagates through it. A transient absorption technique has been used to measure the temperature of the affected atoms and temperature variations from 160 μk to 850 μk, for a probe power ranging from 0 to 50 nW, have been observed. This effect could have implications in relation to using optical nanofibres for probing and manipulating cold or ultracold atoms.
Resumo:
Multi-frequency eddy current measurements are employed in estimating pressure tube (PT) to calandria tube (CT) gap in CANDU fuel channels, a critical inspection activity required to ensure fitness for service of fuel channels. In this thesis, a comprehensive characterization of eddy current gap data is laid out, in order to extract further information on fuel channel condition, and to identify generalized applications for multi-frequency eddy current data. A surface profiling technique, generalizable to multiple probe and conductive material configurations has been developed. This technique has allowed for identification of various pressure tube artefacts, has been independently validated (using ultrasonic measurements), and has been deployed and commissioned at Ontario Power Generation. Dodd and Deeds solutions to the electromagnetic boundary value problem associated with the PT to CT gap probe configuration were experimentally validated for amplitude response to changes in gap. Using the validated Dodd and Deeds solutions, principal components analysis (PCA) has been employed to identify independence and redundancies in multi-frequency eddy current data. This has allowed for an enhanced visualization of factors affecting gap measurement. Results of the PCA of simulation data are consistent with the skin depth equation, and are validated against PCA of physical experiments. Finally, compressed data acquisition has been realized, allowing faster data acquisition for multi-frequency eddy current systems with hardware limitations, and is generalizable to other applications where real time acquisition of large data sets is prohibitive.
Resumo:
A Refinaria de Matosinhos é um dos complexos industriais da Galp Energia. A sua estação de tratamento de águas residuais industriais (ETARI) – designada internamente por Unidade 7000 – é composta por quatro tratamentos: o pré-tratamento, o tratamento físico-químico, o tratamento biológico e o pós-tratamento. Dada a interligação existente, é fundamental a otimização de cada um dos tratamentos. Este trabalho teve como objetivos a identificação dos problemas e/ou possibilidades de melhoria do pré-tratamento, tratamento físico-químico e pós-tratamento e principalmente a otimização do tratamento biológico da ETARI. No pré-tratamento verificou-se que a separação de óleos e lamas não era eficaz uma vez que se formam emulsões destas duas fases. Como solução, sugeriu-se a adição de agentes desemulsionantes, que se revelou economicamente inviável. Assim, sugeriu-se como alternativa o recurso a técnicas de tratamento da emulsão gerada, tais como a extração com solvente, centrifugação, ultrassons e micro-ondas. No tratamento físico-químico constatou-se que o controlo da unidade de saturação de ar na água era feito com base na análise visual dos operadores, o que pode conduzir a condições de operação afastadas das ótimas para este tratamento. Assim, sugeriu-se a realização de um estudo de otimização desta unidade com vista à determinação da razão ar/sólidos ótima para este efluente. Para além disto, constatou-se, ainda, que os consumos de coagulante aumentaram cerca de -- % no último ano, pelo que foi sugerido o estudo da viabilidade do processo de eletrocoagulação como substituto do sistema de coagulação existente. No pós-tratamento identificou-se o processo de lavagem dos filtros como sendo a etapa com possibilidade de ser otimizada. Através de um estudo preliminar concluiu-se que a lavagem contínua de um filtro por cada turno melhorava o desempenho dos mesmos. Constatou-se, ainda, que a introdução de ar comprimido na água de lavagem promove uma maior remoção de detritos do leito de areia, no entanto esta prática parece influenciar negativamente o desempenho dos filtros. No caso do tratamento biológico, identificaram-se problemas ao nível do tempo de retenção hidráulico do tratamento biológico II, que apresentou elevada variabilidade. Apesar de identificado concluiu-se que este problema era de difícil solução. Verificou-se, também, que o oxigénio dissolvido não era monitorizado, pelo que se sugeriu a instalação de uma sonda de oxigénio dissolvido numa zona de baixa turbulência do tanque de arejamento. Concluiu-se que o oxigénio era distribuído de forma homogénea por todo o tanque de arejamento e tentou-se identificar quais os fatores que influenciariam este parâmetro, no entanto, dada a elevada variabilidade do efluente e das condições de tratamento, tal não foi possível. Constatou-se, também, que o doseamento de fosfato para o tratamento biológico II era pouco eficiente já Otimização dos sistemas biológicos e melhorias nos tratamentos da ETARI da Refinaria de Matosinhos que em -- % dos dias se verificaram níveis baixos de fosfato no licor misto (< - mg/L). Foi, por isso, proposta a alteração do atual sistema de doseamento por gravidade para um sistema de bomba doseadora. Para além disso verificou-se que os consumos deste nutriente aumentaram significativamente no último ano (cerca de --%), situação que se constatou estar relacionada com um aumento da população microbiana para este período. Foi possível relacionar-se o aparecimento frequente de lamas à superfície dos decantadores secundários com incrementos repentinos de condutividade, pelo que se sugeriu o armazenamento do efluente nas bacias de tempestade, nestas situações. Verificou-se que a remoção de azoto era praticamente ineficaz uma vez que a conversão de azoto amoniacal em nitratos foi muito baixa. Assim, sugeriu-se o recurso à técnica de bio-augmentação ou a transformação do sistema de lamas ativadas num sistema bietápico. Por fim, constatou-se que a temperatura do efluente à entrada da ETARI apresenta valores bastante elevados para o tratamento biológico (aproximadamente de --º C) pelo que se sugeriu a instalação de uma sonda de temperatura no tanque de arejamento de modo a controlar de forma mais eficaz a temperatura do licor misto. Ainda no que diz respeito ao tratamento biológico, foi possível desenvolver-se um conjunto de ferramentas que visaram o funcionamento otimizado deste tratamento. Nesse sentido, foram apresentadas várias sugestões de melhoria: a utilização do índice volumétrico de lamas como indicador da qualidade das lamas em alternativa à percentagem de lamas; foi desenvolvido um conjunto de fluxogramas para a orientação dos operadores de exterior na resolução de problemas; foi criada uma “janela de operação” que pretende ser um guia de apoio à operação; foi ainda proposta a monitorização frequente da idade das lamas e da razão alimento/microrganismo.
Resumo:
This work presents the development of an in-plane vertical micro-coaxial probe using bulk micromachining technique for high frequency material characterization. The coaxial probe was fabricated in a silicon substrate by standard photolithography and a deep reactive ion etching (DRIE) technique. The through-hole structure in the form of a coaxial probe was etched and metalized with a diluted silver paste. A co-planar waveguide configuration was integrated with the design to characterize the probe. The electrical and RF characteristics of the coaxial probe were determined by simulating the probe design in Ansoft’s High Frequency Structure Simulator (HFSS). The reflection coefficient and transducer gain performance of the probe was measured up to 65 GHz using a vector network analyzer (VNA). The probe demonstrated excellent results over a wide frequency band, indicating its ability to integrate with millimeter wave packaging systems as well as characterize unknown materials at high frequencies. The probe was then placed in contact with 3 materials where their unknown permittivities were determined. To accomplish this, the coaxial probe was placed in contact with the material under test and electromagnetic waves were directed to the surface using the VNA, where its reflection coefficient was then determined over a wide frequency band from dc-to -65GHz. Next, the permittivity of each material was deduced from its measured reflection coefficients using a cross ratio invariance coding technique. The permittivity results obtained when measuring the reflection coefficient data were compared to simulated permittivity results and agreed well. These results validate the use of the micro-coaxial probe to characterize the permittivity of unknown materials at high frequencies up to 65GHz.