729 resultados para protons
Resumo:
The excited states in 22Mg have been investigated by the resonant elastic scattering of 21Na + p.A 4.0 MeV/nucleon 21Na beam was separated by the Center for Nuclear Study (CNS) radioactive ion beam separator (CRIB) and then used to bombard a thick (CH2)n target. The energy spectra of recoiled protons were measured at scattering angles of θc.m. ≈ 172◦, 146◦, and 134◦, respectively. A wide energy-range of excitation function in 22Mg (up to Ex ∼ 8.9 MeV) was obtained simultaneously with a thick-target method, and a state at 7.06 MeV was newly observed. The resonant parameters were deduced from an R-matrix analysis of the center-of-mass (c.m.) differential cross-section data with a SAMMY-M6-BETA code. The astrophysical resonant reaction rate for the 18Ne(α,p)21Na reactionwas recalculated based on the present parameters.Generally speaking,the present rates are much smaller than the previous ones.
Resumo:
An experiment of a S-29 beam bombarding a Au-197 target at an energy of 49.2 MeV/u has been performed to study the two-proton correlated emission from S-29 excited states. Complete-kinematics measurements were carried out in the experiment. The relative momentum, opening angle, and relative energy of two protons, as well as the invariant mass of the final system, were deduced by relativistic-kinematics reconstruction. The Si-27-p-p coincident events were picked out under strict conditions and the phenomenon of p-p correlations was observed among these events. The mechanisms of two-proton emission were analyzed in a simple schematic model, in which the extreme decay modes like He-2 cluster emission, three-body phase-space decay, and two-body sequential emission were taken into account. Associated with the Monte Carlo simulations, the present results show that two protons emitted from the excited states between 9.6 MeV and 10.4 MeV exhibit the features of He-2 cluster decay with a branching ratio of 29(-11)(+10)%.
Resumo:
The excited states in 22Mg have been investigated by the resonant elastic scattering of 21Na + p. A 4.0 MeV/nucleon 21Na beam was separated by the Center for Nuclear Study (CNS) radioactive ion beam separator (CRIB) and then used to bombard a thick (CH2)n target. The energy spectra of recoiled protons were measured at scattering angles of θc.m. ≈ 172◦ , 146◦, and 134◦, respectively. A wide energy-range of excitation function in 22Mg (up to Ex ∼ 8.9 MeV) was obtained simultaneously with a thick-target method, and a state at 7.06 MeV was newly observed. The resonant parameters were deduced from an R-matrix analysis of the center-of-mass (c.m.) differential cross-section data with a SAMMY-M6-BETA code. The astrophysical resonant reaction rate for the 18Ne(α,p)21Na reactionwas recalculated based on the present parameters. Generally speaking, the present rates are much smaller than the previous ones.
Resumo:
We have developed the formula and the numerical code for calculating the rearrangement contribution to the single particle (s.p.) properties in asymmetric nuclear matter induced by three-body forces within the framework of the Brueckner theory extended to include a microscopic three-body force (TBF). We have investigated systematically the TBF-induced rearrangement effect on the s.p. properties and their isospin-behavior in neutron-rich nuclear medium. It is shown that the TBF induces a repulsive rearrangement contribution to the s.p. potential in nuclear medium. The repulsion of the TBF rearrangement contribution increases rapidly as a function of density and nucleon momentum. It reduces largely the attraction of the BHF s.p. potential and enhances strongly the momentum dependence of the s.p. potential at large densities and high-momenta. The TBF rearrangement effect on symmetry potential is to enhances its repulsion (attraction) on neutrons (protons) in dense asymmetric nuclear matter.
Resumo:
Highly differential experimental results of the scattering system He++ on He at 30 keV are presented as well as a complete unified theoretical description where excitation, transfer and ionization are treated simultaneously on an ab initio level. The agreement even for highly differential cross sections is nearly complete although no explicit correlation besides Pauli correlation is included in the calculations.
Resumo:
High-spin states in Pt-187 have been studied experimentally using the Yb-173(O-18, 4n) reaction at beam energies of 78 and 85 MeV. The previously known bands based on the nu i(13/2),nu 7/2(-)[503], and nu i(13/2)(2)nu j configurations have been extended to high-spin states, and new rotational bands associated with the nu 3/2(-)[512] and nu 1/2(-)[521] Nilsson orbits have been identified. The total Routhian surface calculations indicate that the transitional nucleus Pt-187 is very soft with respect to beta and gamma deformations. The band properties, such as level spacings, band crossing frequencies, alignment gains, and signature splittings, have been compared with the systematics observed in neighboring nuclei and have been interpreted within the framework of the cranked shell model. The rotational bands show different band crossing frequencies, which can be explained by the alignment either of i(13/2) neutrons or of h(9/2) protons. Importantly, evidence is presented for a pi h(9/2) alignment at very low frequency in the nu 7/2(-)[503] band. The proton nature of the band crossing is strongly suggested by comparing the measured B(M1;I -> I-1)/B(E2;I -> I-2) ratios with the theoretical values from the semiclassical Donau and Frauendof approach.
Resumo:
In terms of the isospin-dependent quantum molecular dynamics model (IQMD), important isospin effect in the halo-neutron nucleus induced reaction mechanism is. investigated, and consequently, the symmetrical potential form is extracted in the intermediate energy heavy ion collision. Because the interactive potential and in-medium nucleon-nucleon (N-N) cross section in the IQMD model sensitively depend on the density distribution of the colliding system, this type of study is much more based on the extended density distribution with a looser inner nuclear structure of the halo-neutron nucleus. Such a density distribution includes averaged characteristics of the isospin effect of the reaction mechanism and the looser inner nuclear structure. In order to understand clearly the isospin effect of the halo-neutron nucleus induced reaction mechanism, the effects caused by the neutron-halo nucleus and by the stable nucleus with the same mass are compared under the same condition of the incident channel. It is found that in the concerned beam energy region, the ratio of the emitted neutrons and protons and the ratio of the isospin fractionations in the neutron-halo nucleus case are considerably larger than those in the stable nucleus case. Therefore, the information of the symmetry potential in the heavy ion collision can be extracted through such a procedure.
Resumo:
The axially deformed relativistic mean field theory with the force NLSH has been performed in the blocked BCS approximation to investigate the proper-ties and structure of N=Z nuclei from Z=20 to Z=48. Some ground state quantities such as binding energies, quadrupole deformations, one/two-nucleon separation energies, root-mean-squaxe (rms) radii of charge and neutron, and shell gaps have been calculated. The results suggest that large deformations can be found in medium-heavy nuclei with N=Z=38-42. The charge and neutron rms radii increase rapidly beyond the magic number N=Z=28 until Z=42 with increasing nucleon number, which is similar to isotope shift, yet beyond Z=42, they decrease dramatically as the structure changes greatly from Z=42 to Z=43. The evolution of shell gaps with proton number Z can be clearly observed. Besides the appearance of possible new shell closures, some conventional shell closures have been found to disappear in some region. In addition, we found that the Coulomb interaction is not strong enough to breakdown the shell structure of protons in the current region.
Resumo:
An experiment to study exotic two-proton emission from excited levels of the odd-Z nucleus P-28 was performed at the National Laboratory of Heavy Ion Research-Radioactive Ion Beam Line (HIRFL-RIBLL) facility. The projectile P-28 at the energy of 46.5 MeV/u was bombarding a Au-197 target to populate the excited states via Coulomb excitation. Complete-kinematics measurements were realized by the array of silicon strip detectors and the CsI + PIN telescope. Two-proton events were selected and the relativistic-kinematics reconstruction was carried out. The spectrum of relative momentum and opening angle between two protons was deduced from Monte Carlo simulations. Experimental results show that two-proton emission from P-28 excited states less than 17.0 MeV is mainly two-body sequential emission or three-body simultaneous decay in phase space. The present simulations cannot distinguish these two decay modes. No obvious diproton emission was found.
Resumo:
We discuss experimental evidence for a nuclear phase transition driven by the different concentrations of neutrons to protons. Different ratios of the neutron to proton concentrations lead to different critical points for the phase transition. This is analogous to the phase transitions occurring in He-4-He-3 liquid mixtures. We present experimental results that reveal the N/A (or Z/A) dependence of the phase transition and discuss possible implications of these observations in terms of the Landau free energy description of critical phenomena.
Resumo:
The inelastic component of the key astrophysical resonance (1(-), E-x=6.15 MeV) in the O-14(alpha,p)F-17 reaction has been studied by using the resonant scattering of F-17+p. The experiment was done at REX-ISOLDE CERN with the Miniball setup. The thick target method in inverse kinematics was utilized in the present experiment where a 44.2 MeV F-17 beam bombarded a similar to 40 mu m thick (CH2)(n) target. The inelastic scattering protons in coincidence with the de-excited 495 keV gamma rays have been clearly seen and they are from the inelastic branch to the first excited state in F-17 following decay of the 1(-) resonance in Ne-18. Some preliminary results are reported.
Resumo:
Within the framework of the dinuclear system (DNS) model, the production cross sections of superheavy nuclei Hs (Z=108) and Z=112 combined with different reaction systems are analyzed systematically. It is found that the mass asymmetries and the reaction Q values of the projectile target combinations play a very important role on the formation cross sections of the evaporation residues. Both methods to obtain the fusion probability by nucleon transfer by solving a set of microscopically derived master equations along the mass asymmetry degree of freedom (ID) and distinguishing protons and neutrons of fragments (2D) are compared with each other and also with the available experimental data. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Isoscaling is derived within a recently proposed modified Fisher model where the free energy near the critical point is described by the Landau O(m(6)) theory. In this model m = N-f-Z(f)/A(f) is the order parameter, a consequence of (one of) the symmetries of the nuclear Hamiltonian. Within this framework we show that isoscaling depends mainly on this order parameter through the 'external (conjugate) field' H. The external field is just given by the difference in chemical potentials of the neutrons and protons of the two sources. To distinguish from previously employed isoscaling relationships, this approach is dubbed: m-scaling. We discuss the relationship between this framework and the standard isoscaling formalism and point out some substantial differences in interpretation of experimental results which might result. These should be investigated further both theoretically and experimentally. (C) 2010 Elsevier B.V. All rights reserved.