899 resultados para promote
Resumo:
Signaling through the erythropoietin receptor (EPO-R) is crucial for proliferation, differentiation, and survival of erythroid progenitor cells. EPO induces homodimerization of the EPO-R, triggering activation of the receptor-associated kinase JAK2 and activation of STAT5. By mutating the eight tyrosine residues in the cytosolic domain of the EPO-R, we show that either Y343 or Y401 is sufficient to mediate maximal activation of STAT5; tyrosine residues Y429 and Y431 can partially activate STAT5. Comparison of the sequences surrounding these tyrosines reveals YXXL as the probable motif specifying recruitment of STAT5 to the EPO-R. Expression of a mutant EPO-R lacking all eight tyrosine residues in the cytosolic domain supported a low but detectable level of EPO-induced STAT5 activation, indicating the existence of an alternative pathway for STAT5 activation independent of any tyrosine in the EPO-R. The kinetics of STAT5 activation and inactivation were the same, regardless of which tyrosine residue in the EPO-R mediated its activation or whether the alternative pathway was used. The ability of mutant EPO-Rs to activate STAT5 did not directly correlate with their mitogenic potential.
Resumo:
Pancreatic beta cells exhibit oscillations in electrical activity, cytoplasmic free Ca2+ concentration ([Ca2+](i)), and insulin release upon glucose stimulation. The mechanism by which these oscillations are generated is not known. Here we demonstrate fluctuations in the activity of the ATP-dependent K+ channels (K(ATP) channels) in single beta cells subject to glucose stimulation or to stimulation with low concentrations of tolbutamide. During stimulation with glucose or low concentrations of tolbutamide, K(ATP) channel activity decreased and action potentials ensued. After 2-3 min, despite continuous stimulation, action potentials subsided and openings of K(ATP) channels could again be observed. Transient suppression of metabolism by azide in glucose-stimulated beta cells caused reversible termination of electrical activity, mimicking the spontaneous changes observed with continuous glucose stimulation. Thus, oscillations in K(ATP) channel activity during continuous glucose stimulation result in oscillations in electrical activity and [Ca2+](i).
Resumo:
The binding of the exchangeable apolipoprotein apolipophorin III (apoLp-III) to an egg phosphatidylcholine bilayer as a function of the concentration of diacylglycerol (DG) in the bilayer was studied by surface plasmon resonance spectroscopy. At a DG concentration of 2 mol % in the bilayer, the binding of apoLp-III reached saturation. Under saturating conditions, apoLp-III forms a closely packed monolayer approximately 55 A thick, in which each molecule of protein occupies approximately 500 A2 at the membrane surface. These dimensions are consistent with the molecular size of the apoLp-III molecule determined by x-ray crystallography, if apoLp-III binds to the bilayer with the long axis of the apoLp-III normal to the membrane surface. In the absence of protein, the overall structure of the lipid bilayer was not significantly changed up to 2.5 mol% DG. However, at 4 and 6 mol % DG, the presence of nonbilayer structures was observed. The addition of apoLp-III to a membrane containing 6 mol % DG promoted the formation of large lipid-protein complexes. These data support a two-step sequential binding mechanism for binding of apoLp-III to a lipid surface. The first step is a recognition process, consisting of the adsorption of apoLp-III to a nascent hydrophobic defect in the phospholipid bilayer caused by the presence of DG. This recognition process might depend on the presence of a hydrophobic sensor located at one of the ends of the long axis of the apoLp-III molecule but would be consolidated through H-bond and electrostatic interactions. Once primary binding is achieved, subsequent enlargement of the hydrophobic defect in the lipid surface would trigger the unfolding of the apolipoprotein and binding via the amphipathic alpha-helices. This two-step sequential binding mechanism could be a general mechanism for all exchangeable apolipoproteins. A possible physiological role of the ability of apoLp-III to bind to lipid structures in two orientations is also proposed.
Resumo:
Pulmonary neuroendocrine cells are localized predominantly at airway branchpoints. Previous work showed that gastrin-releasing peptide (GRP), a major pulmonary bombesin-like peptide, occurred in neuroendocrine cells exclusively in branching human fetal airways. We now demonstrate that GRP and GRP receptor genes are expressed in fetal mouse lung as early as embryonic day 12 (E12), when lung buds are beginning to branch. By in situ hybridization, GRP receptor transcripts were at highest levels in mesenchymal cells at cleft regions of branching airways and blood vessels. To explore the possibility that bombesin-like peptides might play a role in branching morphogenesis, E12 lung buds were cultured for 48 hr in serum-free medium. In the presence of 0.10-10 microM bombesin, branching was significantly augmented as compared with control cultures, with a peak of 94% above control values at 1 microM (P < 0.005). The bombesin receptor antagonist [Leu13- psi(CH2NH)Leu14]bombesin alone (100 nM) had no effect on baseline branching but completely abolished bombesin-induced branching. A bombesin-related peptide, [Leu8]phyllolitorin also increased branching (65% above control values at 10 nM, P < 0.005). [Leu8]Phyllolitorin also significantly augmented thymidine incorporation in cultured lung buds. Fibronectin, which is abundant at branchpoints, induces GRP gene expression in undifferentiated cell lines. These observations suggest that BLPs secreted by pulmonary neuroendocrine cells may contribute to lung branching morphogenesis. Furthermore, components of branchpoints may induce pulmonary neuroendocrine cell differentiation as part of a positive feedback loop, which could account in part for the high prevalence of these cells at branchpoints.
Resumo:
Grafts of favorable axonal growth substrates were combined with transient nerve growth factor (NGF) infusions to promote morphological and functional recovery in the adult rat brain after lesions of the septohippocampal projection. Long-term septal cholinergic neuronal rescue and partial hippocampal reinnervation were achieved, resulting in partial functional recovery on a simple task assessing habituation but not on a more complex task assessing spatial reference memory. Control animals that received transient NGF infusions without axonal-growth-promoting grafts lacked behavioral recovery but also showed long-term septal neuronal rescue. These findings indicate that (i) partial recovery from central nervous system injury can be induced by both preventing host neuronal loss and promoting host axonal regrowth and (ii) long-term neuronal loss can be prevented with transient NGF infusions.
Resumo:
MyoD, a member of the family of helix-loop-helix myogenic factors that plays a crucial role in skeletal muscle differentiation, is a nuclear phosphoprotein. Using microinjection of purified MyoD protein into rat fibroblasts, we show that the nuclear import of MyoD is a rapid and active process, being ATP and temperature dependent. Two nuclear localization signals (NLSs), one present in the basic region and the other in the helix 1 domain of MyoD protein, are demonstrated to be functional in promoting the active nuclear transport of MyoD. Synthetic peptides spanning these two NLSs and biochemically coupled to IgGs can promote the nuclear import of microinjected IgG conjugates in muscle and nonmuscle cells. Deletion analysis reveals that each sequence can function independently within the MyoD protein since concomittant deletion of both sequences is required to alter the nuclear import of this myogenic factor. In addition, the complete cytoplasmic retention of a beta-galactosidase-MyoD fusion mutant protein, double deleted at these two NLSs, argues against the existence of another functional NLS motif in MyoD.
Resumo:
The fungal parasite of nematode eggs Pochonia chlamydosporia is also a root endophyte known to promote growth of some plants. In this study, we analysed the effect of nine P. chlamydosporia isolates from worldwide origin on tomato growth. Experiments were performed at different scales (Petri dish, growth chamber and greenhouse conditions) and developmental stages (seedlings, plantlets and plants). Seven P. chlamydosporia isolates significantly (P < 0.05) increased the number of secondary roots and six of those increased total weight of tomato seedlings. Six P. chlamydosporia isolates also increased root weight of tomato plantlets. Root colonisation varied between different isolates of this fungus. Again P. chlamydosporia significantly increased root growth of tomato plants under greenhouse conditions and reduced flowering and fruiting times (up to 5 and 12 days, respectively) versus uninoculated tomato plants. P. chlamydosporia increased mature fruit weight in tomato plants. The basis of the mechanisms for growth, flowering and yield promotion in tomato by the fungus are unknown. However, we found that P. chlamydosporia can produce Indole-3-acetic acid and solubilise mineral phosphate. These results suggest that plant hormones or nutrient ability could play an important role. Our results put forward the agronomic importance of P. chlamydosporia as biocontrol agent of plant parasitic nematodes with tomato growth promoting capabilities.
Project SCORE! Coaches’ Perceptions of an Online Tool to Promote Positive Youth Development in Sport
Resumo:
Research points to the potential of youth sport as an avenue to support the growth of particular assets and outcomes. A recurring theme in this line of research is the need to train coaches to deliberately deliver themes relating to positive youth development (PYD) consistently in youth sport programs. The purpose of the study was to design and deliver a technology-based PYD program. Project SCORE! (www.projectscore.ca) is a series of 10 lessons to help coaches integrate PYD into sport. Four youth sport coaches completed the program in this first phase of this research and were interviewed. The goal of this study was to gain some insights from coaches as they completed the program. Positive comments about the program (i.e. ease of use, success of particular lessons, coach’s personal growth) and challenges regarding teaching positive skills to youth are discussed. These results helped to shape the program and make necessary changes so that it may be used for a larger research study. Other implications and future research directions are discussed.