963 resultados para precision metrology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

External metrology systems are increasingly being integrated with traditional industrial articulated robots, especially in the aerospace industries, to improve their absolute accuracy for precision operations such as drilling, machining and jigless assembly. While currently most of the metrology assisted robotics control systems are limited in their position update rate, such that the robot has to be stopped in order to receive a metrology coordinate update, some recent efforts are addressed toward controlling robots using real-time metrology data. The indoor GPS is one of the metrology systems that may be used to provide real-time 6DOF data to a robot controller. Even if there is a noteworthy literature dealing with the evaluation of iGPS performance, there is, however, a lack of literature on how well the iGPS performs under dynamic conditions. This paper presents an experimental evaluation of the dynamic measurement performance of the iGPS, tracking the trajectories of an industrial robot. The same experiment is also repeated using a laser tracker. Besides the experiment results presented, this paper also proposes a novel method for dynamic repeatability comparisons of tracking instruments. © 2011 Springer-Verlag London Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method of accurately controlling the position of a mobile robot using an external large volume metrology (LVM) instrument is presented in this article. By utilising an LVM instrument such as a laser tracker or indoor GPS (iGPS) in mobile robot navigation, many of the most difficult problems in mobile robot navigation can be simplified or avoided. Using the real-time position information from the laser tracker, a very simple navigation algorithm, and a low cost robot, 5mm repeatability was achieved over a volume of 30m radius. A surface digitisation scan of a wind turbine blade section was also demonstrated, illustrating possible applications of the method for manufacturing processes. Further, iGPS guidance of a small KUKA omni-directional robot has been demonstrated, and a full scale prototype system is being developed in cooperation with KUKA Robotics, UK. © 2011 Taylor & Francis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accuracy of many aerospace structures is limited by the accuracy of assembly tooling which is in turn limited by the accuracy of the measurements used to set the tooling. Further loss of accuracy results from different rates of thermal expansion for the components and tooling. This paper describes improved tooling designs and setting processes which have the potential to significantly improve the accuracy of aerospace structures. The most advanced solution described is environmentally isolated interferometer networks embedded within tooling combined with active compensation of component pick-ups. This would eliminate environmental effects on measurements while also allowing compensation for thermal expansion. A more immediately realizable solution is the adjustment of component pick-ups using micrometer jacking screws allowing multilateration to be employed during the final stages of the setting process to generate the required offsets. Copyright © 2011 SAE International.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide range of metrology processes are involved in the manufacture of large products. In addition to the traditional tool-setting and product-verification operations, increasingly flexible metrology-enabled automation is also being used. Faced with many possible measurement problems and a very large number of metrology instruments employing diverse technologies, the selection of the appropriate instrument for a given task can be highly complex. Also, as metrology has become a key manufacturing process, it should be considered in the early stages of design, and there is currently very little research to support this. This paper provides an overview of the important selection criteria for typical measurement processes and presents some novel selection strategies. Metrics that can be used to assess measurability are also discussed. A prototype instrument selection and measurability analysis application is also presented, with discussion of how this can be used as the basis for development of a more sophisticated measurement planning tool. © 2010 Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrepancies of materials, tools, and factory environments, as well as human intervention, make variation an integral part of the manufacturing process of any component. In particular, the assembly of large volume, aerospace parts is an area where significant levels of form and dimensional variation are encountered. Corrective actions can usually be taken to reduce the defects, when the sources and levels of variation are known. For the unknown dimensional and form variations, a tolerancing strategy is typically put in place in order to minimize the effects of production inconsistencies related to geometric dimensions. This generates a challenging problem for the automation of the corresponding manufacturing and assembly processes. Metrology is becoming a major contributor to being able to predict, in real time, the automated assembly problems related to the dimensional variation of parts and assemblies. This is done by continuously measuring dimensions and coordinate points, focusing on the product's key characteristics. In this paper, a number of metrology focused activities for large-volume aerospace products, including their implementation and application in the automation of manufacturing and assembly processes, are reviewed. This is done by using a case study approach within the assembly of large-volume aircraft wing structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With ever-more demanding requirements for the accurate manufacture of large components, dimensional measuring techniques are becoming progressively more sophisticated. This review describes some of the more recently developed techniques and the state-of-the-art in the more well-known large-scale dimensional metrology methods. In some cases, the techniques are described in detail, or, where relevant specialist review papers exist, these are cited as further reading. The traceability of the measurement data collected is discussed with reference to new international standards that are emerging. In some cases, hybrid measurement techniques are finding specialized applications and these are referred to where appropriate. © IMechE 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale mechanical products, such as aircraft and rockets, consist of large numbers of small components, which introduce additional difficulty for assembly accuracy and error estimation. Planar surfaces as key product characteristics are usually utilised for positioning small components in the assembly process. This paper focuses on assembly accuracy analysis of small components with planar surfaces in large-scale volume products. To evaluate the accuracy of the assembly system, an error propagation model for measurement error and fixture error is proposed, based on the assumption that all errors are normally distributed. In this model, the general coordinate vector is adopted to represent the position of the components. The error transmission functions are simplified into a linear model, and the coordinates of the reference points are composed by theoretical value and random error. The installation of a Head-Up Display is taken as an example to analyse the assembly error of small components based on the propagation model. The result shows that the final coordination accuracy is mainly determined by measurement error of the planar surface in small components. To reduce the uncertainty of the plane measurement, an evaluation index of measurement strategy is presented. This index reflects the distribution of the sampling point set and can be calculated by an inertia moment matrix. Finally, a practical application is introduced for validating the evaluation index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a long range, high precision optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a CW pump laser with moderate power and a section of fiber, which has a zero dispersion wavelength near the laser's central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR due to its ultra-wide-band chaotic behavior, and mm-scale spatial resolution is demonstrated. Then we analyze the key factors limiting the operational range of such an OTDR, e. g., integral Rayleigh backscattering and the fiber loss, which degrades the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. Finally, we experimentally demonstrate a correlation OTDR with 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of theoretical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication precision is one of the most critical challenges to the creation of practical photonic circuits composed of coupled high Q-factor microresonators. While very accurate transient tuning of microresonators based on local heating has been reported, the record precision of permanent resonance positioning achieved by post-processing is still within 1 and 5 GHz. Here we demonstrate two coupled bottle microresonators fabricated at the fiber surface with resonances that are matched with a better than 0.16 GHz precision. This corresponds to a better than 0.17 Å precision in the effective fiber radius variation. The achieved fabrication precision is only limited by the resolution of our optical spectrum analyzer and can be potentially improved by an order of magnitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parameter design is an experimental design and analysis methodology for developing robust processes and products. Robustness implies insensitivity to noise disturbances. Subtle experimental realities, such as the joint effect of process knowledge and analysis methodology, may affect the effectiveness of parameter design in precision engineering; where the objective is to detect minute variation in product and process performance. In this thesis, approaches to statistical forced-noise design and analysis methodologies were investigated with respect to detecting performance variations. Given a low degree of process knowledge, Taguchi's methodology of signal-to-noise ratio analysis was found to be more suitable in detecting minute performance variations than the classical approach based on polynomial decomposition. Comparison of inner-array noise (IAN) and outer-array noise (OAN) structuring approaches showed that OAN is a more efficient design for precision engineering. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Intoxilyzer 5000 was tested for calibration curve linearity for ethanol vapor concentration between 0.020 and 0.400g/210L with excellent linearity. Calibration error using reference solutions outside of the allowed concentration range, response to the same ethanol reference solution at different temperatures between 34 and 38$\sp\circ$C, and its response to eleven chemicals, 10 mixtures of two at the time, and one mixture of four chemicals potentially found in human breath have been evaluated. Potential interferents were chosen on the basis of their infrared signatures and the concentration range of solutions corresponding to the non-lethal blood concentration range of various volatile organic compounds reported in the literature. The result of this study indicates that the instrument calibrates with solutions outside the allowed range up to $\pm$10% of target value. Headspace FID dual column GC analysis was used to confirm the concentrations of the solutions. Increasing the temperature of the reference solution from 34 to 38$\sp\circ$C resulted in linear increases in instrument recorded ethanol readings with an average increase of 6.25%/$\sp\circ$C. Of the eleven chemicals studied during this experiment, six, isopropanol, toluene, methyl ethyl ketone, trichloroethylene, acetaldehyde, and methanol could reasonably interfere with the test at non-lethal reported blood concentration ranges, the mixtures of those six chemicals showed linear additive results with a combined effect of as much as a 0.080g/210L reading (Florida's legal limit) without any ethanol present. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historically, memory has been evaluated by examining how much is remembered, however a more recent conception of memory focuses on the accuracy of memories. When using this accuracy-oriented conception of memory, unlike with the quantity-oriented approach, memory does not always deteriorate over time. A possible explanation for this seemingly surprising finding lies in the metacognitive processes of monitoring and control. Use of these processes allows people to withhold responses of which they are unsure, or to adjust the precision of responses to a level that is broad enough to be correct. The ability to accurately report memories has implications for investigators who interview witnesses to crimes, and those who evaluate witness testimony. ^ This research examined the amount of information provided, accuracy, and precision of responses provided during immediate and delayed interviews about a videotaped mock crime. The interview format was manipulated such that a single free narrative response was elicited, or a series of either yes/no or cued questions were asked. Instructions provided by the interviewer indicated to the participants that they should either stress being informative, or being accurate. The interviews were then transcribed and scored. ^ Results indicate that accuracy rates remained stable and high after a one week delay. Compared to those interviewed immediately, after a delay participants provided less information and responses that were less precise. Participants in the free narrative condition were the most accurate. Participants in the cued questions condition provided the most precise responses. Participants in the yes/no questions condition were most likely to say “I don’t know”. The results indicate that people are able to monitor their memories and modify their reports to maintain high accuracy. When control over precision was not possible, such as in the yes/no condition, people said “I don’t know” to maintain accuracy. However when withholding responses and adjusting precision were both possible, people utilized both methods. It seems that concerns that memories reported after a long retention interval might be inaccurate are unfounded. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the performance of a nonlinear fiber gyroscope for improved signal detection beating the quantum limits of its linear counterparts. The performance is examined when the nonlinear gyroscope is illuminated by practical field states, such as coherent and quadrature squeezed states. This is compared with the case of more ideal probes such as photon-number states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors thank Professor Iber^e Luiz Caldas for the suggestions and encouragement. The authors F.F.G.d.S., R.M.R., J.C.S., and H.A.A. acknowledge the Brazilian agency CNPq and state agencies FAPEMIG, FAPESP, and FAPESC, and M.S.B. also acknowledges the EPSRC Grant Ref. No. EP/I032606/1.