923 resultados para portal vein blood flow


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Since salt depletion stimulates the renal prostaglandin system to maintain renal function, the effects of indomethacin and ibuprofen upon renal haemodynamics, electrolyte excretion and renin release were examined in eight healthy male volunteers on a salt restricted diet, before and after frusemide administration. 2. Neither indomethacin (50 mg) nor ibuprofen (400 mg and 800 mg) affected renal blood flow, glomerular filtration rate or electrolyte excretion before frusemide. 3. Renal blood flow and glomerular filtration rate were significantly increased in the first 20 min after frusemide. These changes were significantly attenuated by indomethacin compared with placebo and ibuprofen 400 mg. Frusemide-induced diuresis but not natriuresis was inhibited by all treatments. 4. Both nonsteroidal agents inhibited equally the rise in renin activity seen after frusemide. 5. In this group of healthy volunteers on a salt restricted diet, ibuprofen and indomethacin had no detrimental effects on renal function in the absence of frusemide. The changes in renal haemodynamics due to frusemide were suppressed more by indomethacin than by ibuprofen, probably reflecting the more potent nature of indomethacin as an inhibitor of prostaglandin synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. This study has compared the effects of ibuprofen and indomethacin upon renal haemodynamics, electrolyte excretion and renin release in the presence and absence of frusemide under sodium replete conditions in eight healthy volunteers. 2. Neither ibuprofen (400 mg and 800 mg) nor indomethacin (50 mg) affected renal blood flow, glomerular filtration rate or electrolyte excretion in the basal state. 3. Frusemide had no effect on renal blood flow, but significantly increased glomerular filtration rate. This latter change was suppressed significantly only by ibuprofen 400 mg. Frusemide-induced diuresis was inhibited by all treatments, while natriuresis following frusemide was inhibited by indomethacin only. 4. Significant increments in plasma renin activity, which were suppressed by all treatments, were observed after frusemide. The degree of inhibition of the renin responses was significantly greater in the presence of indomethacin than with either dose of ibuprofen. 5. In a sodium replete setting in healthy volunteers, indomethacin and ibuprofen had no detrimental effects on basal renal function. In the presence of frusemide, indomethacin had more anti-natriuretic and renin-suppressing effect than ibuprofen. There was no evidence for a dose-related effect of ibuprofen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The effects of equipotent doses of frusemide (10 mg and 100 mg) and bumetanide (250 micrograms and 2.5 mg) upon renal and peripheral vascular responses, urinary prostaglandin excretion, plasma renin activity, angiotensin II and noradrenaline were compared in nine healthy volunteers. 2. Frusemide (10 mg and 100 mg) and bumetanide (2.5 mg) increased renal blood flow acutely compared with placebo but bumetanide (250 micrograms) had no effect. The changes in peripheral vascular responses were not significantly different from placebo. 3. Urinary prostaglandin metabolite excretion was acutely increased by all treatments, with no inter-treatment difference. Plasma renin activity was increased acutely by both doses of frusemide and by bumetanide (2.5 mg) compared with placebo and to bumetanide (250 micrograms). There were no differences between the latter two treatments. Angiotensin II was increased significantly 30 min after frusemide 100 mg and bumetanide 2.5 mg, and by all four treatments at 50 min when compared with placebo. There were no significant differences between either of the low doses or the higher doses. Plasma noradrenaline was unchanged by all treatments. 4. Frusemide 100 mg and bumetanide 2.5 mg have the same effects on the renal vasculature and the renin-angiotensin-prostaglandin system. Under the conditions of this study, frusemide 10 mg had different effects on plasma renin activity than bumetanide 250 micrograms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effectiveness of nifedipine retard as a treatment for Raynaud's phenomenon was assessed in 15 patients in a placebo controlled double blind study. An associated connective tissue disease was evident in 7 patients. Changes in finger and forearm blood flow (venous occlusion plethysmography), digital skin temperature and digital systolic pressure were measured acutely before and after a 2-week treatment period. Subjective assessment of efficacy was based on patient diary data. In addition alpha 2-adrenoceptor density on platelets was measured before and after chronic nifedipine therapy in both the patient group and in an age-and-sex-matched control group. No significant haemodynamic changes were observed. Nifedipine retard significantly reduced the frequency (p less than 0.05) with no change in either the duration or severity of vasospastic attacks. Side effects were common following nifedipine retard. A reduction in alpha 2-adrenoceptor density on platelets was observed in patients compared to a control group (p less than 0.05). Alpha 2-adrenoceptor density was unchanged following a 2-week treatment period with nifedipine retard. This study concludes that nifedipine retard is not effective in the treatment of Raynaud's phenomenon over a short time course. Patients with Raynaud's phenomenon have reduced alpha 2-adrenoceptor densities on their platelets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an urgent need to improve upon Alzheimer's disease (AD) treatments. Limitations of existing drugs are that they target specific downstream neurochemical abnormalities while the upstream underlying pathology continues unchecked. Preferable treatments would be those that can target a number of the broad range of molecular and cellular abnormalities that occur in AD such as amyloid-ß (Aß) and hyperphosphorylated tau-mediated damage, inflammation, and mitochondrial dysfunction, as well more systemic abnormalities such as brain atrophy, impaired cerebral blood flow (CBF), and cerebrovascular disease. Recent pre-clinical, epidemiological, and a limited number of clinical investigations have shown that prevention of the signaling of the multifunctional and potent vasoconstrictor angiotensin II (Ang II) may offer broad benefits in AD. In addition to helping to ameliorate co-morbid hypertension, these drugs also likely improve diminished CBF which is common in AD and can contribute to focal Aß pathology. These drugs, angiotensin converting enzyme (ACE) inhibitors, or angiotensin receptor antagonists (ARAs) may also help deteriorating cognitive function by preventing Ang II-mediated inhibition of acetylcholine release as well as interrupt the upregulation of deleterious inflammatory pathways that are widely recognized in AD. Given the current urgency to find better treatments for AD and the relatively immediate availability of drugs that are already widely prescribed for the treatment of hypertension, one of the largest modifiable risk factors for AD, this article reviews current knowledge as to the eligibility of ACE-inhibitors and ARAs for consideration in future clinical trials in AD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many cardiovascular diseases are characterised by the restriction of blood flow through arteries. Stents can be expanded within arteries to remove such restrictions; however, tissue in-growth into the stent can lead to restenosis. In order to predict the long-term efficacy of stenting, a mechanobiological model of the arterial tissue reaction to stress is required. In this study, a computational model of arterial tissue response to stenting is applied to three clinically relevant stent designs. We ask the question whether such a mechanobiological model can differentiate between stents used clinically, and we compare these predictions to a purely mechanical analysis. In doing so, we are testing the hypothesis that a mechanobiological model of arterial tissue response to injury could predict the long-term outcomes of stent design. Finite element analysis of the expansion of three different stent types was performed in an idealised, 3D artery. Injury was calculated in the arterial tissue using a remaining-life damage mechanics approach. The inflammatory response to this initial injury was modelled using equations governing variables which represented tissue-degrading species and growth factors. Three levels of inflammation response were modelled to account for inter-patient variability. A lattice-based model of smooth muscle cell behaviour was implemented, treating cells as discrete agents governed by local rules. The simulations predicted differences between stent designs similar to those found in vivo. It showed that the volume of neointima produced could be quantified, providing a quantitative comparison of stents. In contrast, the differences between stents based on stress alone were highly dependent on the choice of comparison criteria. These results show that the choice of stress criteria for stent comparisons is critical. This study shows that mechanobiological modelling may provide a valuable tool in stent design, allowing predictions of their long-term efficacy. The level of inflammation was shown to affect the sensitivity of the model to stent design. If this finding was verified in patients, this could suggest that high-inflammation patients may require alternative treatments to stenting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor development. In this study we found that during the early stages of somatic cell reprogramming toward a pluripotent state, specific gene expression patterns are altered. Therefore, we developed a method to generate partial-iPS (PiPS) cells by transferring four reprogramming factors (OCT4, SOX2, KLF4, and c-MYC) to human fibroblasts for 4 d. PiPS cells did not form tumors in vivo and clearly displayed the potential to differentiate into endothelial cells (ECs) in response to defined media and culture conditions. To clarify the mechanism of PiPS cell differentiation into ECs, SET translocation (myeloid leukemia-associated) (SET) similar protein (SETSIP) was indentified to be induced during somatic cell reprogramming. Importantly, when PiPS cells were treated with VEGF, SETSIP was translocated to the cell nucleus, directly bound to the VE-cadherin promoter, increasing vascular endothelial-cadherin (VE-cadherin) expression levels and EC differentiation. Functionally, PiPS-ECs improved neovascularization and blood flow recovery in a hindlimb ischemic model. Furthermore, PiPS-ECs displayed good attachment, stabilization, patency, and typical vascular structure when seeded on decellularized vessel scaffolds. These findings indicate that reprogramming of fibroblasts into ECs via SETSIP and VEGF has a potential clinical application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-phase flow of a hydrophobic ionic liquid and water was studied in capillaries made of three different materials (two types of Teflon, FEP and Tefzel, and glass) with sizes between 200µm and 270µm. The ionic liquid was 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide, with density and viscosity of 1420kgm and 0.041kgms, respectively. Flow patterns and pressure drop were measured for two inlet configurations (T- and Y-junction), for total flow rates of 0.065-214.9cmh and ionic liquid volume fractions from 0.05 to 0.8. The continuous phase in the glass capillary depended on the fluid that initially filled the channel. When water was introduced first, it became the continuous phase with the ionic liquid forming plugs or a mixture of plugs and drops within it. In the Teflon microchannels, the order that fluids were introduced did not affect the results and the ionic liquid was always the continuous phase. The main patterns observed were annular, plug, and drop flow. Pressure drop in the Teflon microchannels at a constant ionic liquid flow rate, was found to increase as the ionic liquid volume fraction decreased, and was always higher than the single phase ionic liquid value at the same flow rate as in the two-phase mixture. However, in the glass microchannel during plug flow with water as the continuous phase, pressure drop for a constant ionic liquid flow rate was always lower than the single phase ionic liquid value. A modified plug flow pressure drop model using a correlation for film thickness derived for the current fluids pair showed very good agreement with the experimental data. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sympathetic and parasympathetic divisions of the autonomic nervous system constantly control the heart (sympathetic and parasympathetic divisions) and blood vessels (predominantly the sympathetic division) to maintain appropriate blood pressure and organ blood flow over sometimes widely varying conditions. This can be adversely affected by pathological conditions that can damage one or both branches of autonomic control. The set of teaching laboratory activities outlined here uses various interventions, namely, 1) the heart rate response to deep breathing, 2) the heart rate response to a Valsalva maneuver, 3) the heart rate response to standing, and 4) the blood pressure response to standing, that cause fairly predictable disturbances in cardiovascular parameters in normal circumstances, which serve to demonstrate the dynamic control of the cardiovascular system by autonomic nerves. These tests are also used clinically to help investigate potential damage to this control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major components of blood vessels are the vascular endothelium and its supporting smooth muscle. Significant strides have been made in the understanding of the cellular and molecular biology of these two cell types and in particular their interactions have been the subject of much interest and debate over the past two decades. The vascular endothelium is now known to profoundly influence the synthetic and motor functions of the underlying smooth muscle and participate in the pathogenesis of all the major vascular disorders. Similarly, the vascular smooth muscle has important effects on the overlying endothelium, and any disruption in the cellular physiology of either cell type can result in dysfunction with important effects on blood flow and vascular permeability The majority of this accumulated knowledge relates to the vascular cells of the macrocirculation. Pericytes are the supporting cells of the microvasculature and a body of evidence is now available to show that similar regulatory mechanisms and vessel-wall cross-talk exists between these cells and the microvascular endothelium. Nowhere are these interactions more important than in the retinal microcirculation where autoregulation is vital for the maintenance of smooth and uninterrrupted blood flow. This review focuses on the interactions between retinal microvascular endothelial cells and their associated pericytes and examines the role of the endothelial cell and the pericyte in the pathogenesis of disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the highly vasoactive peptide endothelin 1 (ET1) was tested on bovine retinal microvascular pericytes propagated in vitro. Specific binding of 125I-ET1 to retinal pericytes was documented by autoradiography. ET1 caused contraction of pericytes at a concentration of 0.1 nM which was accompanied by increases in inositol phosphates. Exposure of pericytes to 10 nM ET1 resulted in the aggregation and realignment of muscle-specific actins into bundles which were oriented parallel to the long axis of the cell, and ET1 was also mitogenic to pericytes in the presence of low levels of fetal calf serum. These observations suggest that ET1 may play an important role in endothelial cell-pericyte interactions within the microvasculature of the retina and that it may be involved in the autoregulation of retinal blood flow.