984 resultados para plant tissue cultures


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We observed the occurrence of large numbers of galls induced by Parkiamyia paraensis (Diptera, Cecidomyiidae) on the leaflets of Parkia pendula (Fabaceae) in northern Para, Brazil. We addressed two questions in this study: i) what is the proportion of attacked plants in the field, and nursery conditions?; and ii) what is the impact of galls on the host plant? An average of 86% of the plants were galled in the field. Galled P. pendula were distinct from healthy individuals due to their prostrated architecture and death of terminal shoots. Approximately 50% of the total available leaves and 35% leaflets were attacked by P. paraensis on saplings under nursery conditions. Each one-year old plant supported an average of 1,300 galls, and an average of 60g allocated to galled tissue. Otherwise, attacked individuals were taller and heavier than healthy plants. Attacked plants weighed five times more than healthy plants. When the weight of the galls was removed, the total weight (aerial part without galls) of attacked plants was drastically reduced, indicating that most of the biomass of attacked plants was due to the attack by P. paraensis galls. Although the data indicate a paradox, as young plants attacked by the galling herbivore appear to develop more vigorously than unattacked plants, we suggest that P. paraensis negatively affect P. pendula development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calbindin D-28K is a calcium-binding protein which is expressed by subpopulations of dorsal root ganglion cells cultured from 10-day-old (E10) chick embryos. After 7 or 10 days of culture, more than 20% of the ganglion cells are immunostained by an anticalbindin-antiserum; however, after 14 days of culture, the proportion drops to 10%. This fall can be prevented by addition of muscle extract to cultures at 10 days. Thus the transitory expression of calbindin-immunoreactivity by responsive sensory neurons would be not only induced but also maintained by a differentiation factor of muscular origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Small intestinal submucosa is a xenogenic, acellular, collagen rich membrane with inherent growth factors that has previously been shown to promote in vivo bladder regeneration. We evaluate in vitro use of small intestinal submucosa to support the individual and combined growth of bladder urothelial cells and smooth muscle cells for potential use in tissue engineering techniques, and in vitro study of the cellular mechanisms involved in bladder regeneration. MATERIALS AND METHODS: Primary cultures of human bladder urothelial cells and smooth muscle cells were established using standard enzymatic digestion or explant techniques. Cultured cells were then seeded on small intestinal submucosa at a density of 1 x 105 cells per cm.2, incubated and harvested at 3, 7, 14 and 28 days. The 5 separate culture methods evaluated were urothelial cells seeded alone on the mucosal surface of small intestinal submucosa, smooth muscle cells seeded alone on the mucosal surface, layered coculture of smooth muscle cells seeded on the mucosal surface followed by urothelial cells 1 hour later, sandwich coculture of smooth muscle cells seeded on the serosal surface followed by seeding of urothelial cells on the mucosal surface 24 hours later, and mixed coculture of urothelial cells and smooth muscle cells mixed and seeded together on the mucosal surface. Following harvesting at the designated time points small intestinal submucosa cell constructs were formalin fixed and processed for routine histology including Masson trichrome staining. Specific cell growth characteristics were studied with particular attention to cell morphology, cell proliferation and layering, cell sorting, presence of a pseudostratified urothelium and matrix penetrance. To aid in the identification of smooth muscle cells and urothelial cells in the coculture groups, immunohistochemical analysis was performed with antibodies to alpha-smooth muscle actin and cytokeratins AE1/AE3. RESULTS: Progressive 3-dimensional growth of urothelial cells and smooth muscle cells occurred in vitro on small intestinal submucosa. When seeded alone urothelial cells and smooth muscle cells grew in several layers with minimal to no matrix penetration. In contrast, layered, mixed and sandwich coculture methods demonstrated significant enhancement of smooth muscle cell penetration of the membrane. The layered and sandwich coculture techniques resulted in organized cell sorting, formation of a well-defined pseudostratified urothelium and multilayered smooth muscle cells with enhanced matrix penetration. With the mixed coculture technique there was no evidence of cell sorting although matrix penetrance by the smooth muscle cells was evident. Immunohistochemical studies demonstrated that urothelial cells and smooth muscle cells maintain the expression of the phenotypic markers of differentiation alpha-smooth muscle actin and cytokeratins AE1/AE3. CONCLUSIONS: Small intestinal submucosa supports the 3-dimensional growth of human bladder cells in vitro. Successful combined growth of bladder cells on small intestinal submucosa with different seeding techniques has important future clinical implications with respect to tissue engineering technology. The results of our study demonstrate that there are important smooth muscle cell-epithelial cell interactions involved in determining the type of in vitro cell growth that occurs on small intestinal submucosa. Small intestinal submucosa is a valuable tool for in vitro study of the cell-cell and cell-matrix interactions that are involved in regeneration and various disease processes of the bladder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RésuméEn agriculture d'énormes pertes sont causées par des champignons telluriques pathogènes tels que Thielaviopsis, Fusarium, Gaeumannomyces et Rhizoctonia ou encore l'oomycète Pythium. Certaines bactéries dites bénéfiques, comme Pseudomonas fluorescens, ont la capacité de protéger les plantes de ces pathogènes par la colonisation de leur racines, par la production de métabolites secondaires possédants des propriétés antifongiques et par l'induction des mécanismes de défenses de la plante colonisée. P. fluorescens CHAO, une bactérie biocontrôle isolée d'un champ de tabac à Payerne, a la faculté de produire un large spectre de métabolites antifongiques, en particulier le 2,4- diacétylphloroglucinol (DAPG), la pyolutéorine (PLT), le cyanure d'hydrogène (HCN), la pyrrolnitrine (PRN) ainsi que des chélateurs de fer.La plante, par sécrétion racinaire, produit des rhizodéposites, source de carbone et d'azote, qui profitent aux populations bactériennes vivant dans la rhizosphere. De plus, certains stresses biotiques et abiotiques modifient cette sécrétion racinaire, en terme quantitatif et qualitatif. De leur côté, les bactéries bénéfiques, améliorent, de façon direct et/ou indirect, la croissance de la plante hôte. De nombreux facteurs biotiques et abiotiques sont connus pour réguler la production de métabolites secondaires chez les bactéries. Des études récentes ont démontré l'importance de la communication entre la plante et les bactéries bénéfiques afin que s'établisse une interaction profitant à chacun des deux partis. Il est ainsi vraisemblable que les populations bactériennes associées aux racines soient capables d'intégrer ces signaux et d'adapter spécifiquement leur comportement en conséquence.La première partie de ce travail de thèse a été la mise au point d'outils basés sur la cytométrie permettant de mesurer l'activité antifongique de cellules bactériennes individuelles dans un environnent naturel, les racines des plantes. Nous avons démontré, grâce à un double marquage aux protéines autofluorescentes GFP et mCherry, que les niveaux d'expression des gènes impliqués dans la biosynthèse des substances antifongiques DAPG, PLT, PRN et HCN ne sont pas les mêmes dans des milieux de cultures liquides que sur les racines de céréales. Par exemple, l'expression de pltA (impliqué dans la biosynthèse du PLT) est quasiment abolie sur les racines de blé mais atteint un niveau relativement haut in vitro. De plus cette étude a mis en avant l'influence du génotype céréalien sur l'expression du gène phlA qui est impliqué dans la biosynthèse du DAPG.Une seconde étude a révélé la communication existant entre une céréale (orge) infectée par le pathogène tellurique Pythium ultimum et P. fluorescens CHAO. Un système de partage des racines nous a permis de séparer physiquement le pathogène et la bactérie bénéfique sur la plante. Cette méthode a donné la possibilité d'évaluer l'effet systémique, causé par l'attaque du pathogène, de la plante sur la bactérie biocontrôle. En effet, l'infection par le phytopathogène modifie la concentration de certains composés phénoliques dans les exsudats racinaires stimulant ainsi l'expression de phi A chez P.fluorescens CHAO.Une troisième partie de ce travail focalise sur l'effet des amibes qui sont des micro-prédateurs présents dans la rhizosphere. Leur présence diminue l'expression des gènes impliqués dans la biosynthèse du DAPG, PLT, PRN et HCN chez P.fluorescens CHAO, ceci en culture liquide et sur des racines d'orge. De plus, des molécules provenant du surnageant d'amibes, influencent l'expression des gènes requis pour la biosynthèse de ces antifongiques. Ces résultats illustrent que les amibes et les bactéries de la rhizosphere ont développé des stratégies pour se reconnaître et adapter leur comportement.La dernière section de ce travail est consacrée à l'acide indole-acétique (LA.A), une phytohormone connue pour son effet stimulateur sur phlA. Une étude moléculaire détaillée nous a démontré que cet effet de l'IAA est notamment modulé par une pompe à efflux (FusPl) et de son régulateur transcriptionnel (MarRl). De plus, les gènes fusPl et marRl sont régulés par d'autres composés phénoliques tels que le salicylate (un signal végétal) et l'acide fusarique (une phytotoxine du pathogène Fusarium).En résumé, ce travail de thèse illustre la complexité des interactions entre les eucaryotes et procaryotes de la rhizosphère. La reconnaissance mutuelle et l'instauration d'un dialogue moléculaire entre une plante hôte et ses bactéries bénéfiques associées? sont indispensables à la survie des deux protagonistes et semblent être hautement spécifiques.SummaryIn agriculture important crop losses result from the attack of soil-borne phytopathogenic fungi, including Thielaviopsis, Fusarium, Gaeumannomyces and Rhizoctonia, as well as from the oomycete Pythium. Certain beneficial microorganisms of the rhizosphere, in particular Pseudomonas fluorescens, have the ability to protect plants against phytopathogens by the intense colonisation of roots, by the production of antifungal exoproducts, and by induction of plant host defences. P. fluorescens strain CHAO, isolated from a tobacco field near Payerne, produces a large array of antifungal exoproducts, including 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT), hydrogen cyanide (HCN), pyrrolnitrin (PRN) and iron chelators. Plants produce rhizodeposites via root secretion and these represent a relevant source of carbon and nitrogen for rhizosphere microorganisms. Various biotic and abiotic stresses influence the quantity and the quality of released exudates. One the other hand, beneficial bacteria directly or indirectly promote plant growth. Biotic and abiotic factors regulate exoproduct production in biocontrol microorganisms. Recent studies have highlighted the importance of communication in establishing a fine-tuned mutualist interaction between plants and their associated beneficial bacteria. Bacteria may be able to integrate rhizosphere signals and adapt subsequently their behaviour.In a first part of the thesis, we developed a new method to monitor directly antifungal activity of individual bacterial cells in a natural environment, i.e. on roots of crop plants. We were able to demonstrate, via a dual-labelling system involving green and red fluorescent proteins (GFP, mCherry) and FACS-based flow cytometry, that expression levels of biosynthetic genes for the antifungal compounds DAPG, PLT, PRN, and HCN are highly different in liquid culture and on roots of cereals. For instance, expression of pltA (involved in PLT biosynthesis) was nearly abolished on wheat roots whereas it attained a relatively high level under in vitro conditions. In addition, we established the importance of the cereal genotype in the expression of phi A (involved in DAPG biosynthesis) in P. fluorescens CHAO.A second part of this work highlighted the systemic communication that exists between biocontrol pseudomonads and plants following attack by a root pathogen. A split-root system, allowing physical separation between the soil-borne oomycete pathogen Phytium ultimum and P. fluorescens CHAO on barley roots, was set up. Root infection by the pathogen triggered a modification of the concentration of certain phenolic root exudates in the healthy root part, resulting in an induction ofphlA expression in P. fluorescens CHAO.Amoebas are micro-predators of the rhizosphere that feed notably on bacteria. In the third part of the thesis, co-habitation of Acanthamoeba castellanii with P. fluorescens CHAO in culture media and on barley roots was found to significantly reduce bacterial expression of genes involved in the biosynthesis of DAPG, PLT, HCN and PRN. Interestingly, molecular cues present in supernatant of A. castelanii induced the expression of these antifungal genes. These findings illustrate the strategies of mutual recognition developed by amoeba and rhizosphere bacteria triggering responses that allow specific adaptations of their behaviour.The last section of the work focuses on indole-3-acetic acid (IAA), a phytohormone that stimulates the expression of phi A. A detailed molecular study revealed that the IAA-mediated effect on phi A is notably modulated by an efflux pump (FusPl) and its transcriptional regulator (MarRl). Remarkably, transcription of fusPl and marRl was strongly upregulated in presence of other phenolic compounds such as salicylate (a plant signal) and fusaric acid (a phytotoxin of the pathogenic fungus Fusarium).To sum up, this work illustrates the great complexity of interactions between eukaryotes and prokaryotes taking place in the rhizosphere niche. The mutual recognition and the establishment of a molecular cross-talk between the host plant and its associated beneficial bacteria are essential for the survival of the two partners and these interactions appear to be highly specific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thrombin is involved in mediating neuronal death in cerebral ischemia. We investigated its so far unknown mode of activation in ischemic neural tissue. We used an in vitro approach to distinguish the role of circulating coagulation factors from endogenous cerebral mechanisms. We modeled ischemic stroke by subjecting rat organotypic hippocampal slice cultures to 30-min oxygen (5%) and glucose (1 mmol/L) deprivation (OGD). Perinuclear activated factor X (FXa) immunoreactivity was observed in CA1 neurons after OGD. Selective FXa inhibition by fondaparinux during and after OGD significantly reduced neuronal death in the CA1 after 48 h. Thrombin enzyme activity was increased in the medium 24 h after OGD and this increase was prevented by fondaparinux suggesting that FXa catalyzes the conversion of prothrombin to thrombin in neural tissue after ischemia in vitro. Treatment with SCH79797, a selective antagonist of the thrombin receptor protease-activated receptor-1 (PAR-1), significantly decreased neuronal cell death indicating that thrombin signals ischemic damage via PAR-1. The c-Jun N-terminal kinase (JNK) pathway plays an important role in excitotoxicity and cerebral ischemia and we observed activation of the JNK substrate, c-Jun in our model. Both the FXa inhibitor, fondaparinux and the PAR-1 antagonist SCH79797, decreased the level of phospho-c-Jun Ser73. These results indicate that FXa activates thrombin in cerebral ischemia, which leads via PAR-1 to the activation of the JNK pathway resulting in neuronal death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary sensory neurons in mouse dorsal root ganglia consist of diversified subpopulations which express distinct phenotypic characteristics such as substance P or calbindin D-28k. To determine whether neuronal phenotypes are altered or not in in vitro cultures carried out in a defined synthetic medium, dissociated dorsal root ganglion cells from newborn mice were grown in the alpha-modified minimum essential medium either supplemented with 10% fetal calf serum or serum-free. About 80% of the neurons survived after 5 days of culture in both media, but only 35% or 65% were rescued after 12 days in serum-free or fetal calf serum supplemented medium, respectively. The neuronal subpopulations expressing substance P or calbindin D-28k displayed similar morphological properties in both media and a higher resistance to culture conditions than the whole neuronal cell population, especially in serum-free medium. It is therefore concluded that a defined synthetic medium offers reproducible conditions to culture dorsal root ganglion cells for at least 5 days, stimulates the expression of substance P and enriches preferentially neuronal phenotypes expressing substance P or calbindin D-28k, for a longer period of culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serum-free aggregating brain cell cultures are free-floating three-dimensional primary cell cultures able to reconstitute spontaneously a histotypic brain architecture to reproduce critical steps of brain development and to reach a high level of structural and functional maturity. This culture system offers, therefore, a unique model for neurotoxicity testing both during the development and at advanced cellular differentiation, and the high number of aggregates available combined with the excellent reproducibility of the cultures facilitates routine test procedures. This chapter presents a detailed description of the preparation, maintenance, and use of these cultures for neurotoxicity studies and a comparison of the developmental characteristics between cultures derived from the telencephalon and cultures derived from the whole brain. For culture preparation, mechanically dissociated embryonic brain tissue is used. The initial cell suspension, composed of neural stem cells, neural progenitor cells, immature postmitotic neurons, glioblasts, and microglial cells, is kept in a serum-free, chemically defined medium under continuous gyratory agitation. Spherical aggregates form spontaneously and are maintained in suspension culture for several weeks. Within the aggregates, the cells rearrange and mature, reproducing critical morphogenic events, such as migration, proliferation, differentiation, synaptogenesis, and myelination. For experimentation, replicate cultures are prepared by the randomization of aggregates from several original flasks. The high yield and reproducibility of the cultures enable multiparametric endpoint analyses, including "omics" approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggregates of fetal rat brain were maintained in rotating culture for 30-40 days and were analyzed morphologically and biochemically. At 4 days in culture all cells were undifferentiated. At 26 days in vitro over 90% of all cells within the aggregates could be identified as neurons, astrocytes or oligodendrocytes. Myelinated axons and morphologically mature synapses were present at 26 days. Myelination started between 18 and 19 days in culture as determined biochemically. Myelin basic protein sulphatide synthesis and 2′,3′-cyclic nucleotide 3′-phosphohydrolase activity increased with in vitro age. The amount of myelin observed within the aggregates was much lower than observed at the corresponding age in vivo. Neurons and neuronal processes were undergoing severe degeneration in the 40-day aggregates and synaptic contacts were not maintained. There were no normal myelinated axons at 40 days although multilammellar membranes were found intra- and extracellularly. The ganglioside pattern of the aggregates were qualitatively similar to rat whole brain. Quantitatively the GM3ganglioside was elevated in comparison to whole rat brain. Our results indicate that aggregating rat brain cultures provide a useful in vitro system for the biochemical and morphological analysis of myelin formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular chaperones are central to cellular protein homeostasis. In mammals, protein misfolding diseases and aging cause inflammation and progressive tissue loss, in correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond to heat shock by inducing the accumulation of heat-shock proteins (HSPs), many of which molecular chaperones involved in protein homeostasis, in reducing stress damages and promoting cellular recovery and thermotolerance. We performed a meta-analysis of published microarray data and compared expression profiles of HSP genes from mammalian and plant cells in response to heat or isothermal treatments with drugs. The differences and overlaps between HSP and chaperone genes were analyzed, and expression patterns were clustered and organized in a network. HSPs and chaperones only partly overlapped. Heat-shock induced a subset of chaperones primarily targeted to the cytoplasm and organelles but not to the endoplasmic reticulum, which organized into a network with a central core of Hsp90s, Hsp70s, and sHSPs. Heat was best mimicked by isothermal treatments with Hsp90 inhibitors, whereas less toxic drugs, some of which non-steroidal anti-inflammatory drugs, weakly expressed different subsets of Hsp chaperones. This type of analysis may uncover new HSP-inducing drugs to improve protein homeostasis in misfolding and aging diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the crowded environment of human cells, folding of nascent polypeptides and refolding of stress-unfolded proteins is error prone. Accumulation of cytotoxic misfolded and aggregated species may cause cell death, tissue loss, degenerative conformational diseases, and aging. Nevertheless, young cells effectively express a network of molecular chaperones and folding enzymes, termed here "the chaperome," which can prevent formation of potentially harmful misfolded protein conformers and use the energy of adenosine triphosphate (ATP) to rehabilitate already formed toxic aggregates into native functional proteins. In an attempt to extend knowledge of chaperome mechanisms in cellular proteostasis, we performed a meta-analysis of human chaperome using high-throughput proteomic data from 11 immortalized human cell lines. Chaperome polypeptides were about 10 % of total protein mass of human cells, half of which were Hsp90s and Hsp70s. Knowledge of cellular concentrations and ratios among chaperome polypeptides provided a novel basis to understand mechanisms by which the Hsp60, Hsp70, Hsp90, and small heat shock proteins (HSPs), in collaboration with cochaperones and folding enzymes, assist de novo protein folding, import polypeptides into organelles, unfold stress-destabilized toxic conformers, and control the conformal activity of native proteins in the crowded environment of the cell. Proteomic data also provided means to distinguish between stable components of chaperone core machineries and dynamic regulatory cochaperones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Plants cannot run away to escape attacking herbivores, but they defend themselves by producing anti-digestive proteins and toxic compounds (for example glucosinolates). The first goal of this thesis was to study changes in gene expression after insect attack using microarrays. The responses of Arabidopsis thaliana to feeding by the specialist Pieris rapae and the generalist Spodoptera liffora is were compared. We found that the transcript profiles after feeding by the two chewing insects were remarkably similar, although the generalist induced a slightly stronger response. The second goal was to evaluate the implication of the four signals jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and abscisic acid (ABA) in the control of insect-regulated gene expression. Using signaling mutants, we observed that JA was the predominant signal and that ABA modulated defense gene expression. In contrast, SA and ET appeared to control slightly gene expression, but only after feeding by S. litforalis. The third goal was to establish whether plant responses are really effective against insects. In accordance with the transcript profile, both insects were affected by the JA-dependent defenses, as they performed better on the JA-insensitive mutant. S. littoralis also performed better on ABA-deficient mutants, providing evidence for the role of ABA in defense against insects. When testing indole or aliphatic glucosinolate deficient mutants, we found that they were also more susceptible to insect feeding, providing some of the first genetic evidence for the defensive role of glucosinolates in planta. Finally, a glutathione-deficient mutant, pad2-1, was also more susceptible to insect feeding and we could attribute this phenotype to a lowered accumulation of the major indole glucosinolate. In this thesis, we provide a comprehensive list of insect-regulated genes, including many transcription factors that constitute interesting candidate genes for the further study of insect-induced expression changes. Understanding how the plant responses to insects are regulated will provide tools for a better management of insect pest in the field. Résumé: Les plantes ne peuvent s'échapper pour fuir les insectes qui les attaquent, mais elles se défendent en produisant des protéines anti-digestives et des composés toxiques (par exemple des glucosinolates). Le premier but de cette thèse était d'étudier les changements de l'expression génétique lors d'attaque par des insectes en utilisant des puces à ADN. Nous avons comparé la réponse d'Arabidopsis thaliana à deux espèces d'insectes avec des habitudes alimentaires différentes : le spécialiste Pieris rapae et le généraliste Spodoptera littoralis. Nous avons trouvé que les profils de transcription après l'attaque par les deux insectes sont remarquablement similaires, bien que le généraliste induise une réponse légèrement plus forte. Le deuxième but était de déterminer l'implication de quatre signaux dans le contrôle de la réponse :l'acide jasmonique (JA), l'acide salicylique (SA), l'éthylène (ET), et l'acide abscissique (ABA). En utilisant de mutants de signalisation, nous avons montré que l'acide jasmonique était le signal prédominant et que l'acide abscissique modulait l'expression génétique. D'autre part, l'acide salicylique et l'éthylène contrôlent à un degré moindre l'expression génétique, mais seulement après l'attaque par S. littoralís. Le troisième but était d'établir si les réponses des plantes sont efficaces contre les insectes. En accord avec le profil de transcription, les deux espèces d'insectes se sont mieux développées sur un mutant insensible au JA, indiquant que les défenses contrôlées par ce signal sont cruciales pour la plante. De plus, les larves de S. littorales se sont mieux développées sur des mutants déficients en ABA, ce qui fournit une preuve du rôle de l'acide abscissique dans la défense contre les insectes. En testant des mutants déficients en glucosinolates de type indole ou aliphatique, nous avons trouvé qu'ils étaient plus sensibles aux insectes, démontrant ainsi le rôle défensif des glucosinolates in planta. Finalement, le mutant déficient en glutathion pad2-1 était aussi plus sensible à l'attaque des insectes, et nous avons pu attribuer ce phénotype à une plus faible augmentation d'un indole glucosinolate dans ce mutant. Dans cette thèse, nous avons mis en évidence un nombre important de gènes contrôlés par les insectes, comprenant de nombreux facteurs de transcription qui constituent des candidats intéressants pour`étudier plus en détail les changements d'expression génétique induits par les insectes. Une meilleure compréhension de la réponse des plantes contre l'attaque des insectes devrait nous permettre de développer de nouvelles stratégies pour mieux gérer les ravageurs des cultures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subcellular fractions isolated from rat brain aggregating cell cultures were studied by electron microscopy and showed the presence of typical myelin membranes. The chemical composition of purified culture myelin was similar to the fraction isolated from rat brain in terms of CNP specific activity, protein and lipid composition. The ratio of small to large components of myelin basic protein was comparable in culture and in vivo. These two proteins incorporated radioactive phosphorus. The major myelin glycoprotein was present and during development in culture its apparent molecular weight decreased although it never reached the position observed in myelin isolated from adult rats. In culture, the yield of myelin did not increase substantially between 33 and 50 days and was comparable to that of 15-day-old rat brain. The ratio basic protein to proteolipid protein resembled immature myelin and the cerebroside content was very low. A 'floating fraction' was isolated from the cultures and contained some myelin but mostly single membranes. Although these results indicate that myelin maturation is delayed in vitro this culture system provides substantial amounts of purified myelin to allow a complete biochemical analysis and metabolic studies during development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The coagulation factor thrombin mediates ischemic neuronal deathand, at a low concentration, induces tolerance to ischemia.We investigated its modeof activation in ischemic neural tissue using an in vitro approach to distinguish therole of circulating coagulation factors from endogenous cerebral mechanisms. Wealso studied the signalling pathway downstream of thrombin in ischemia and afterthrombin preconditioning.Methods: Rat organotypic hippocampal slice cultures to 30 minute oxygen (5%)and glucose (1 mmol/L) deprivation (OGD).Results: Selective factor Xa (FXa) inhibition by fondaparinux during and afterOGD significantly reduced neuronal death in the CA1 after 48 hours. Thrombinactivity was increased in the medium 24 hours after OGD and this increasewas prevented by fondaparinux suggesting that FXa catalyzes the conversion ofprothrombin to thrombin in neural tissue after ischemia in vitro. Treatment withSCH79797, a selective antagonist of the thrombin receptor protease activatedreceptor-1 (PAR-1), significantly decreased neuronal cell death indicating thatthrombin signals ischemic damage via PAR-1. The JNK pathway plays an importantrole in cerebral ischemia and we observed activation of the JNK substrate,c-Jun in our model. Both the FXa inhibitor, fondaparinux and the PAR-1 antagonistSCH79797, decreased the level of phospho-c-Jun Ser73. After thrombin preconditioningc-Jun was activated by phosphorylation in the nuclei of neurons of the CA1.Treatment with a synthetic thrombin receptor agonist resulted in the same c-Junactivation profile and protection against subsequent OGD indicating that thrombinalso signals via PAR-1 and c-Jun in cell protection.Conclusion: These results indicate that FXa activates thrombin in cerebral ischemia,leading via PAR-1 to the activation of the JNK pathway resulting in neuronal death.Thrombin induced tolerance also involves PAR-1 and JNK, revealing commonfeatures in cell death and survival signalling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal subpopulations of dorsal root ganglion (DRG) cells in the chicken exhibit carbonic anhydrase (CA) activity. To determine whether CA activity is expressed by DRG cells maintained in in vitro cultures, dissociated DRG cells from 10-day-old chick embryos were cultured on a collagen substrate. The influence exerted by environmental factors on the enzyme expression was tested under various conditions of culture. Neuron-enriched cell cultures and mixed DRG-cell cultures (including numerous non-neuronal cells) were performed either in a defined medium or in a horse serum-supplemented medium. In all the tested conditions, subpopulations of cultured sensory neurons expressed CA activity in their cell bodies, while their neurites were rarely stained; in each case, the percentage of CA-positive neurons declined with the age of the cultures. The number and the persistence of neurons possessing CA activity as well as the intensity of the reaction were enhanced by addition of horse serum. In contrast, the expression of the neuronal CA activity was not affected by the presence of non-neuronal cells or by the rise of CO2 concentration. Thus, the appearance and disappearance of neuronal subpopulations expressing CA activity may be decisively influenced by factors contained in the horse serum. The loss of CA-positive neurons with time could result from a cell selection or from genetic repression. Analysis of the time curves does not support a preferential cell death of CA-positive neurons but suggests that the eventual conversion of CA-positive neurons into CA-negative neurons results from a loss of the enzyme activity. These results indicate that the phenotypic expression of cultured sensory neurons is dependent on defined environmental factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Embryonic stem cells (ESCs) offer attractive prospective as potential source of neurons for cell replacement therapy in human neurodegenerative diseases. Besides, ESCs neural differentiation enables in vitro tissue engineering for fundamental research and drug discovery aimed at the nervous system. We have established stable and long-term three-dimensional (3D) culture conditions which can be used to model long latency and complex neurodegenerative diseases. Mouse ESCs-derived neural progenitor cells generated by MS5 stromal cells induction, result in strictly neural 3D cultures of about 120-mum thick, whose cells expressed mature neuronal, astrocytes and myelin markers. Neurons were from the glutamatergic and gabaergic lineages. This nervous tissue was spatially organized in specific layers resembling brain sub-ependymal (SE) nervous tissue, and was maintained in vitro for at least 3.5 months with great stability. Electron microscopy showed the presence of mature synapses and myelinated axons, suggesting functional maturation. Electrophysiological activity revealed biological signals involving action potential propagation along neuronal fibres and synaptic-like release of neurotransmitters. The rapid development and stabilization of this 3D cultures model result in an abundant and long-lasting production that is compatible with multiple and productive investigations for neurodegenerative diseases modeling, drug and toxicology screening, stress and aging research.