899 resultados para planetary scales
Resumo:
Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Tese de doutoramento, Geologia (Geologia Económica e do Ambiente), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Introduction: Several scores are commonly used to evaluate patients' postoperative satisfaction after lateral ankle ligament repair, including: AOFAS, FAAM, CAIT and CAIS. Comparing published studies in the literature is difficult, as the same patient can have markedly different results depending on which scoring system is used. The current study aims to address this gap in the literature by developing a system to compare these tests, to allow better analysis and comparison of published studies. Patients and methods: This is a retrospective cohort study of 47 patients following lateral ankle ligament repair using a modified Broström-Gould technique. All patients were operated between 2005 and 2010 by a single surgeon and followed the same post operative rehabilitation protocol. Six patients were excluded from the study because of concomitant surgery. Patients were assessed by an independent observer. We used the Pearson correlation coefficient to analyse the concordance of the scores, as well as scatter plots to assess the linear relationship between them. Results: A linear distribution between the scores was found when the results were analysed using scatter plots. We were thus able to use the Pearson correlation coefficient to evaluate the relationship between each of the different postoperative scores. The correlation was found to be above 0.5 in all cases except for the comparison between the CAIT and the FAAM for the activities of daily living (0.39). We were, therefore, able to compare the results obtained and assess the relative concordance of the scoring systems. The results showed that the more specific the scale is, the worst the score is and inversely. So the CAIT and the CAIS appeared to be more severe than the AOFAS and the FAAM measuring the activities of daily living. The sports subscale of the FAAM demonstrated intermediate results. Conclusion: This study outlines a system to compare different postoperative scores commonly used to evaluate outcome after ankle stabilization surgery. The impact of this study is that it makes comparison of published studies easier, even though they use a variety of different clinical scores, thus facilitating better outcome analysis of operative techniques.
Resumo:
Knowledge of the spatial distribution of hydraulic conductivity (K) within an aquifer is critical for reliable predictions of solute transport and the development of effective groundwater management and/or remediation strategies. While core analyses and hydraulic logging can provide highly detailed information, such information is inherently localized around boreholes that tend to be sparsely distributed throughout the aquifer volume. Conversely, larger-scale hydraulic experiments like pumping and tracer tests provide relatively low-resolution estimates of K in the investigated subsurface region. As a result, traditional hydrogeological measurement techniques contain a gap in terms of spatial resolution and coverage, and they are often alone inadequate for characterizing heterogeneous aquifers. Geophysical methods have the potential to bridge this gap. The recent increased interest in the application of geophysical methods to hydrogeological problems is clearly evidenced by the formation and rapid growth of the domain of hydrogeophysics over the past decade (e.g., Rubin and Hubbard, 2005).
Resumo:
Through a case-study analysis of Ontario's ethanol policy, this thesis addresses a number of themes that are consequential to policy and policy-making: spatiality, democracy and uncertainty. First, I address the 'spatial debate' in Geography pertaining to the relevance and affordances of a 'scalar' versus a 'flat' ontoepistemology. I argue that policy is guided by prior arrangements, but is by no means inevitable or predetermined. As such, scale and network are pragmatic geographical concepts that can effectively address the issue of the spatiality of policy and policy-making. Second, I discuss the democratic nature of policy-making in Ontario through an examination of the spaces of engagement that facilitate deliberative democracy. I analyze to what extent these spaces fit into Ontario's environmental policy-making process, and to what extent they were used by various stakeholders. Last, I take seriously the fact that uncertainty and unavoidable injustice are central to policy, and examine the ways in which this uncertainty shaped the specifics of Ontario's ethanol policy. Ultimately, this thesis is an exercise in understanding sub-national environmental policy-making in Canada, with an emphasis on how policy-makers tackle the issues they are faced with in the context of environmental change, political-economic integration, local priorities, individual goals, and irreducible uncertainty.
Resumo:
This study sought to compare the results of the Motivation Assessment Scale (MAS; Durand & Crimmins, 1988), Questions About Behavior Function Scale (QABF; Matson & Vollmer, 1996) and Functional Analysis Screening Tool (FAST; Iwata & Deleon, 1996), when completed by parent informants in a sample of children and youth with autism spectrum disorders (ASD) who display challenging behaviour. Results indicated that there was low agreement between the functional hypotheses derived from each of three measures. In addition, correlations between functionally analogous scales were substantially lower than expected, while correlations between non-analogous subscales were stronger than anticipated. As indicated by this study, clinicians choosing to use FBA questionnaires to assess behavioural function, may not obtain accurate functional hypotheses, potentially resulting in ineffective intervention plans. The current study underscores the caution that must be taken when asking parents to complete these questionnaires to determine the function(s) of challenging behaviour for children/youth with ASD.
Resumo:
In the present study the availability of satellite altimeter sea level data with good spatial and temporal resolution is explored to describe and understand circulation of the tropical Indian Ocean. The derived geostrophic circulations showed large variability in all scales. The seasonal cycle described using monthly climatology generated using 12 years SSH data from 1993 to 2004 revealed several new aspects of tropical Indian Ocean circulation. The interannual variability presented in this study using monthly means of SSH data for 12 years have shown large year-to-year variability. The EOF analysis has shown the influence of several periodic signals in the annual and interannual scales where the relative strengths of the signals also varied from year to year. Since one of the reasons for this kind of variability in circulation is the presence of planetary waves. This study discussed the influence of such waves on circulation by presenting two cases one in the Arabian Sea and other in the Bay of Bengal.
Resumo:
We study the effect of parameter fluctuations and the resultant multiplicative noise on the synchronization of coupled chaotic systems. We introduce a new quantity, the fluctuation rate Ф as the number of perturbations occurring to the parameter in unit time. It is shown that ϕ is the most significant quantity that determines the quality of synchronization. It is found that parameter fluctuations with high fluctuation rates do not destroy synchronization, irrespective of the statistical features of the fluctuations. We also present a quasi-analytic explanation to the relation between ϕ and the error in synchrony.
Resumo:
We propose to show in this paper, that the time series obtained from biological systems such as human brain are invariably nonstationary because of different time scales involved in the dynamical process. This makes the invariant parameters time dependent. We made a global analysis of the EEG data obtained from the eight locations on the skull space and studied simultaneously the dynamical characteristics from various parts of the brain. We have proved that the dynamical parameters are sensitive to the time scales and hence in the study of brain one must identify all relevant time scales involved in the process to get an insight in the working of brain.
Resumo:
In this paper we study the evolution of the kinetic features of the martensitic transition in a Cu-Al-Mn single crystal under thermal cycling. The use of several experimental techniques including optical microscopy, calorimetry, and acoustic emission, has enabled us to perform an analysis at multiple scales. In particular, we have focused on the analysis of avalanche events (associated with the nucleation and growth of martensitic domains), which occur during the transition. There are significant differences between the kinetics at large and small length scales. On the one hand, at small length scales, small avalanche events tend to sum to give new larger events in subsequent loops. On the other hand, at large length scales the large domains tend to split into smaller ones on thermal cycling. We suggest that such different behavior is the necessary ingredient that leads the system to the final critical state corresponding to a power-law distribution of avalanches.
Resumo:
Regional climate models are becoming increasingly popular to provide high resolution climate change information for impacts assessments to inform adaptation options. Many countries and provinces requiring these assessments are as small as 200,000 km2 in size, significantly smaller than an ideal domain needed for successful applications of one-way nested regional climate models. Therefore assessments on sub-regional scales (e.g., river basins) are generally carried out using climate change simulations performed for relatively larger regions. Here we show that the seasonal mean hydrological cycle and the day-to-day precipitation variations of a sub-region within the model domain are sensitive to the domain size, even though the large scale circulation features over the region are largely insensitive. On seasonal timescales, the relatively smaller domains intensify the hydrological cycle by increasing the net transport of moisture into the study region and thereby enhancing the precipitation and local recycling of moisture. On daily timescales, the simulations run over smaller domains produce higher number of moderate precipitation days in the sub-region relative to the corresponding larger domain simulations. An assessment of daily variations of water vapor and the vertical velocity within the sub-region indicates that the smaller domains may favor more frequent moderate uplifting and subsequent precipitation in the region. The results remained largely insensitive to the horizontal resolution of the model, indicating the robustness of the domain size influence on the regional model solutions. These domain size dependent precipitation characteristics have the potential to add one more level of uncertainty to the downscaled projections.
Resumo:
Formal Concept Analysis allows to derive conceptual hierarchies from data tables. Formal Concept Analysis is applied in various domains, e.g., data analysis, information retrieval, and knowledge discovery in databases. In order to deal with increasing sizes of the data tables (and to allow more complex data structures than just binary attributes), conceputal scales habe been developed. They are considered as metadata which structure the data conceptually. But in large applications, the number of conceptual scales increases as well. Techniques are needed which support the navigation of the user also on this meta-level of conceptual scales. In this paper, we attack this problem by extending the set of scales by hierarchically ordered higher level scales and by introducing a visualization technique called nested scaling. We extend the two-level architecture of Formal Concept Analysis (the data table plus one level of conceptual scales) to many-level architecture with a cascading system of conceptual scales. The approach also allows to use representation techniques of Formal Concept Analysis for the visualization of thesauri and ontologies.
Resumo:
The main objective of this thesis was to determine the potential impact of heat stress (HS) on physiological traits of lactating cows and semen quality of bulls kept in a temperate climate. The thesis is comprised of three studies. An innovative statistical modeling aspect common to all three studies was the application of random regression methodology (RRM) to study the phenotypic and genetic trajectory of traits in dependency of a continuous temperature humidity index (THI). In the first study, semen quality and quantity traits of 562 Holstein sires kept on an AI station in northwestern Germany were analyzed in the course of THI calculated from data obtained from the nearest weather station. Heat stress was identified based on a decline in semen quality and quantity parameters. The identified general HS threshold (THI = 60) and the thermoneutal zone (THI in the range from 50 to 60) for semen production were lower than detected in studies conducted in tropical and subtropical climates. Even though adult bulls were characterized by higher semen productivity compared to younger bulls, they responded with a stronger semen production loss during harsh environments. Heritabilities (low to moderate range) and additive genetic variances of semen characteristics varied with different levels of THI. Also, based on genetic correlations genotype, by environment interactions were detected. Taken together, these findings suggest the application of specific selection strategies for specific climate conditions. In the second study, the effect of the continuous environmental descriptor THI as measured inside the barns on rectal temperatures (RT), skin temperatures (ST), vaginal temperatures (VT), respiration rates (RR), and pulse rate (PR) of lactating Holstein Friesian (HF) and dual-purpose German black pied cattle (DSN) was analyzed. Increasing HS from THI 65 (threshold) to THI 86 (maximal THI) resulted in an increase of RT by 0.6 °C (DSN) and 1 °C (HF), ST by 3.5 °C (HF) and 8 °C (DSN), VT by 0.3 °C (DSN), and RR by 47 breaths / minute (DSN), and decreased PR by 7 beats / minute (DSN). The undesired effects of rising THI on physiological traits were most pronounced for cows with high levels of milk yield and milk constituents, cows in early days in milk and later parities, and during summer seasons in the year 2014. In the third study of this dissertation, the genetic components of the cow’s physiological responses to HS were investigated. Heat stress was deduced from indoor THI measurements, and physiological traits were recorded on native DSN cows and their genetically upgraded crosses with Holstein Friesian sires in two experimental herds from pasture-based production systems reflecting a harsh environment of the northern part of Germany. Although heritabilities were in a low range (from 0.018 to 0.072), alterations of heritabilities, repeatabilities, and genetic components in the course of THI justify the implementation of genetic evaluations including heat stress components. However, low repeatabilities indicate the necessity of using repeated records for measuring physiological traits in German cattle. Moderate EBV correlations between different trait combinations indicate the potential of selection for one trait to simultaneously improve the other physiological attributes. In conclusion, bulls of AI centers and lactating cows suffer from HS during more extreme weather conditions also in the temperate climate of Northern Germany. Monitoring physiological traits during warm and humid conditions could provide precious information for detection of appropriate times for implementation of cooling systems and changes in feeding and management strategies. Subsequently, the inclusion of these physiological traits with THI specific breeding values into overall breeding goals could contribute to improving cattle adaptability by selecting the optimal animal for extreme hot and humid conditions. Furthermore, the recording of meteorological data in close distance to the cow and visualizing the surface body temperature by infrared thermography techniques might be helpful for recognizing heat tolerance and adaptability in cattle.
Resumo:
Usually, psychometricians apply classical factorial analysis to evaluate construct validity of order rank scales. Nevertheless, these scales have particular characteristics that must be taken into account: total scores and rank are highly relevant