810 resultados para physiological requirements
Resumo:
The ability to enter torpor at low ambient temperature, which enables insectivorous bats to survive seasonal food shortage, is often seen as a prerequisite for colonizing cold environments. Free-tailed bats (Molossidae) show a distribution with a maximum latitudinal extension that appears to be intermediate between truly tropical and temperate-zone bat families. We therefore tested the hypothesis that Tadarida teniotis, the molossid species reaching the highest latitude worldwide (46 degrees N), lacks the extreme physiological adaptations to cold that enable other sympatric bats to enter further into the temperate zone. We studied the metabolism of individuals subjected to various ambient temperatures in the laboratory by respirometry, and we monitored the body temperature of free-ranging individuals in winter and early spring in the Swiss Alps using temperature-sensitive radio-tags. For comparison, metabolic data were obtained from Nyctalus noctula, a typically hibernating vespertilionid bat of similar body size and convergent foraging tactics. The metabolic data support the hypothesis that T. teniotis cannot experience such low ambient temperatures as sympatric temperate-zone vespertilionid bats without incurring much higher energetic costs for thermogenesis. The minimum rate of metabolism in torpor was obtained at 7.5 degrees-10 degrees C in T. teniotis, as compared to 2.5 degrees-5 degrees C in N. noctula. Field data showed that T. teniotis behaves as a classic thermo-conforming hibernator in the Alps, with torpor bouts lasting up to 8 d. This contradicts the widely accepted opinion that Molossidae are nonhibernating bars. However, average body temperature (10 degrees-13 degrees C) and mean arousal frequency (3.4 d in one bat in January) appear to be markedly higher than in other temperate-zone bat species. At the northern border of its range T. teniotis selects relatively warm roosts (crevices in tall, south-exposed limestone cliffs) in winter where temperatures oscillate around 10 degrees C. By this means, T. teniotis apparently avoids the risk of prolonged exposure to energetically critical ambient temperatures in torpor (<6.5 degrees-7.5 degrees C) during cold spells. Possibly shared by other Molossidae, the physiological pattern observed in T. teniotis may clearly be linked to the intermediate latitudinal extension of this bat family.
Resumo:
Astrocytes have traditionally been considered ancillary, satellite cells of the nervous system. However, it is a very recent acquisition that glial cells generate signaling loops which are integral to the brain circuitry and participate, interactively with neuronal networks, in the processing of information. Such a conceptual breakthrough makes this field of investigation one of the hottest in neuroscience, as it calls for a revision of past theories of brain function as well as for new strategies of experimental exploration of brain function. Glial cells are electrically not excitable, and it was only the use of optical recording techniques together with calcium sensitive dyes, that allowed the chemical excitability of glial cells to become apparent. Studies using these new techniques have shown for the first time that glial cells are activated by surrounding synaptic activity and translate neuronal signals into their own calcium code. Intracellular calcium concentration([Ca2+]i) elevations in glial cells have then shown to underlie spatial transfer of information in the glial network, accompanied by release of chemical transmitters (gliotransmitters) such as glutamate and back-signaling to neurons. As a consequence, optical imaging techniques applied to cell cultures or intact tissue have become a state-of-the-art technology for studying glial cell signaling. The molecular mechanisms leading to release of "gliotransmitters," especially glutamate, from glia are under debate. Accumulating evidence clearly indicates that astrocytes secrete numerous transmitters by Ca(2+)-dependent exocytosis. This review will discuss the mechanisms underlying the release of chemical transmitters from astrocytes with a particular emphasis to the regulated exocytosis processes.
Resumo:
OBJECTIVE: Reliable data about the nutrient intake of elderly noninstitutionalized women in Switzerland is lacking. The aim of this study was to assess the energy and nutrient intake in this specific population. SUBJECTS: The 401 subjects were randomly selected women of mean age of 80.4 years (range 75-87) recruited from the Swiss SEMOF (Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk) cohort study. A validated food frequency questionnaire (FFQ) was submitted to the 401 subjects to assess dietary intake. RESULTS: The FFQ showed a mean daily energy intake of 1544 kcal (+/-447.7). Protein intake was 65.2 g (+/-19.9), that is 1.03 g kg(-1) body weight per day. The mean daily intake for energy, fat, carbohydrate, calcium, magnesium, vitamin C, D and E were below the RNI. However, protein, phosphorus, potassium, iron and vitamin B6 were above the RNI. CONCLUSION: The mean nutrient intake of these free living Swiss elderly women was low compared with standards. Energy dense foods rich in carbohydrate, magnesium, calcium, vitamin D and E as well as regular sunshine exposure is recommended in order to optimise dietary intake.
Resumo:
Concrete will suffer frost damage when saturated and subjected to freezing temperatures. Frost-durable concrete can be produced if a specialized surfactant, also known as an air-entraining admixture (AEA), is added during mixing to stabilize microscopic air voids. Small and well-dispersed air voids are critical to produce frost-resistant concrete. Work completed by Klieger in 1952 found the minimum volume of air required to consistently ensure frost durability in a concrete mixture subjected to rapid freezing and thawing cycles. He suggested that frost durability was provided if 18 percent air was created in the paste. This is the basis of current practice despite the tests being conducted on materials that are no longer available using tests that are different from those in use today. Based on the data presented, it was found that a minimum air content of 3.5 percent in the concrete and 11.0 percent in the paste should yield concrete durable in the ASTM C 666 with modern AEAs and low or no lignosulfonate water reducers (WRs). Limited data suggests that mixtures with a higher dosage of lignosulfonate will need about 1 percent more air in the concrete or 3 percent more air in the paste for the materials and procedures used. A spacing factor of 0.008 in. was still found to be necessary to provide frost durability for the mixtures investigated.
Resumo:
Fas (CD95/Apo-1) ligand is a potent inducer of apoptosis and one of the major killing effector mechanisms of cytotoxic T cells. Thus, Fas ligand activity has to be tightly regulated, involving various transcriptional and post-transcriptional processes. For example, preformed Fas ligand is stored in secretory lysosomes of activated T cells, and rapidly released by degranulation upon reactivation. In this study, we analyzed the minimal requirements for activation-induced degranulation of Fas ligand. T cell receptor activation can be mimicked by calcium ionophore and phorbol ester. Unexpectedly, we found that stimulation with phorbol ester alone is sufficient to trigger Fas ligand release, whereas calcium ionophore is neither sufficient nor necessary. The relevance of this process was confirmed in primary CD4(+) and CD8(+) T cells and NK cells. Although the activation of protein kinase(s) was absolutely required for Fas ligand degranulation, protein kinase C or A were not involved. Previous reports have shown that preformed Fas ligand co-localizes with other markers of cytolytic granules. We found, however, that the activation-induced degranulation of Fas ligand has distinct requirements and involves different mechanisms than those of the granule markers CD63 and CD107a/Lamp-1. We conclude that activation-induced degranulation of Fas ligand in cytotoxic lymphocytes is differently regulated than other classical cytotoxic granule proteins.
Resumo:
Purpose: Many retinal degenerations result from defective retina-specific gene expressions. Thus, it is important to understand how the expression of a photoreceptor-specific gene is regulated in vivo in order to achieve successful gene therapy. The present study aims to design an AAV2/8 vector that can regulate the transcript level in a physiological manner to replace missing PDE6b in Rd1 and Rd10 mice. In previous studies (Ogieta, et al., 2000), the short 5' flanking sequence of the human PDE6b gene (350 bp) was shown to be photoreceptor-specific in transgenic mice. However, the efficiency and specificity of the 5' flanking region of the human PDE6b was not investigated in the context of gene therapy during retinal degeneration. In this study, two different sequences of the 5' flanking region of the human PDE6b gene were studied as promoter elements and their expression will be tested in wild type and diseased retinas (Rd 10 mice).Methods: Two 5' flanking fragments of the human PDE6b gene: (-93 to +53 (150 bp) and -297 to +53 (350 bp)) were cloned in different plasmids in order to check their expression in vitro and in vivo by constructing an AAV2/8 vector. These elements drove the activity of either luciferase (pGL3 plasmids) or EGFP. jetPEI transfection in Y 79 cells was used to evaluate gene expression through luciferase activity. Constructs encoding EGFP under the control of the two promoters were performed in AAV2.1-93 (or 297)-EGFP plasmids to produce AAV2/8 vectors.Results: When pGL3-93 (150 bp) or pGL3-297 (350 bp) were transfected in the Y-79 cells, the smaller fragment (150 bp) showed higher gene expression compared to the 350 bp element and to the SV40 control, as previously reported. The 350 bp drove similar levels of expression when compared to the SV40 promoter. In view of these results, the fragments (150 bp or 350 bp) were integrated into the AAV2.1-EGFP plasmid to produce AAV2/8 vector, and we are currently evaluating the efficiency and specificity of the produced constructs in vivo in normal and diseased retinas.Conclusions: Comparisons of these vectors with vectors bearing ubiquitous promoters should reveal which construct is the most suitable to drive efficient and specific gene expression in diseased retinas in order to restore a normal function on the long term.
Resumo:
The malic enzyme (ME) gene is a target for both thyroid hormone receptors and peroxisome proliferator-activated receptors (PPAR). Within the ME promoter, two direct repeat (DR)-1-like elements, MEp and MEd, have been identified as putative PPAR response elements (PPRE). We demonstrate that only MEp and not MEd is able to bind PPAR/retinoid X receptor (RXR) heterodimers and mediate peroxisome proliferator signaling. Taking advantage of the close sequence resemblance of MEp and MEd, we have identified crucial determinants of a PPRE. Using reciprocal mutation analyses of these two elements, we show the preference for adenine as the spacing nucleotide between the two half-sites of the PPRE and demonstrate the importance of the two first bases flanking the core DR1 in 5'. This latter feature of the PPRE lead us to consider the polarity of the PPAR/RXR heterodimer bound to its cognate element. We demonstrate that, in contrast to the polarity of RXR/TR and RXR/RAR bound to DR4 and DR5 elements respectively, PPAR binds to the 5' extended half-site of the response element, while RXR occupies the 3' half-site. Consistent with this polarity is our finding that formation and binding of the PPAR/RXR heterodimer requires an intact hinge T region in RXR while its integrity is not required for binding of the RXR/TR heterodimer to a DR4.
Resumo:
Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in Brazilian Amazonia, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. For both species leaf dry mass and leaf area per total plant dry mass, and leaf area per leaf dry mass were higher for low-light plants, whereas root mass per total plant dry mass was higher for high-light plants. High-light S. cayennensis allocated significantly more biomass to reproductive tissue than low-light plants, suggesting a probably lower ability of this species to maintain itself under shaded conditions. Relative growth rate (RGR) in I. asarifolia was initially higher for high-light grown plants and after 20 days started decreasing, becoming similar to low-light plants at the last two harvests (at 30 and 40 days). In S. cayennensis, RGR was also higher for high-light plants; however, this trend was not significant at the first and last harvest dates (10 and 40 days). These results are discussed in relation to their ecological and weed management implications.
Resumo:
Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in the Brazilian Amazonia, Brazil, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. The objective was to determine the effect of shade on photosynthetic features and leaf nitrogen content of I. asarifolia and S. cayennensis. High-irradiance grown I. asarifolia leaves had significantly higher dark respiration and light saturated rates of photosynthesis than low-irradiance leaves. No significant differences for these traits, between treatments, were observed in S. cayennensis. Low-irradiance leaves of both species displayed higher CO2 assimilation rates under low irradiance. High-irradiance grown leaves of both species had less nitrogen per unit of weight. Low-irradiance S. cayennensis had more nitrogen per unit of leaf area than high-irradiance plants; however, I. asarifolia showed no consistent pattern for this variable through time. For S. cayennensis, leaf nitrogen content and CO2 assimilation were inversely correlated to the amount of biomass allocated to developing reproductive structures. These results are discussed in relation to their ecological and weed management implications.
Resumo:
PURPOSE: The present study was designed to determine the stimulation intensity necessary for an adequate assessment of central and peripheral components of neuromuscular fatigue of the knee extensors. METHODS: Three different stimulation intensities (100, 120 and 150 % of the lowest intensity evoking a plateau in M-waves and twitch amplitudes, optimal stimulation intensity, OSI) were used to assess voluntary activation level (VAL) as well as M-wave, twitch and doublet amplitudes before, during and after an incremental isometric exercise performed by 14 (8 men) healthy and physically active volunteers. A visual analog scale was used to evaluate the associated discomfort. RESULTS: There was no difference (p > 0.05) in VAL between the three intensities before and after exercise. However, we found that stimulating at 100 % OSI may overestimate the extent of peripheral fatigue during exercise, whereas 150 % OSI stimulations led to greater discomfort associated with doublet stimulations as well as to an increased antagonist co-activation compared to 100 % OSI. CONCLUSION: We recommend using 120 % OSI, as it constitutes a good trade-off between discomfort and reliable measurements.
Resumo:
The objective of this work was to determine the early physiological changes throughout shelf life of fresh broccoli (Brassica oleracea L. var. italica) cv. Piracicaba Precoce at 25ºC and relative humidity of 96% in the dark until complete senescence. Head inflorescences showed lack of turgidity and commercial value when weight loss reached up to 5%, coinciding with 48 hour after harvest. Chlorophyll content was stable until 24 hours after harvesting; afterwards, an intense degradation phase took place. At 72 hours, total head yellowing was observed when chlorophyll content dropped to 30% of its initial content. Peroxidase activity increased by 1.4 fold during the first six hours, dropping to its lowest level approximately 24 hours after harvesting. However, from this time on, an increment of activity was observed until 72 hours. At 24 hours after harvesting, respiration was reduced by 50%. At later stages of senescence, respiration of florets was stable, but in a lower level than that determined at harvest. Sharp reduction of starch and reducing sugars was observed within 24 hours after harvesting, followed by continuous period of decline in starch and non-reducing sugars.
Resumo:
The estrogen-responsive element (ERE) present in the 5'-flanking region of the Xenopus laevis vitellogenin (vit) gene B1 has been characterized by transient expression analysis of chimeric vit-tk-CAT (chloramphenicol acetyltransferase) gene constructs transfected into the human estrogen-responsive MCF-7 cell line. The vit B1 ERE behaves like an inducible enhancer, since it is able to confer estrogen inducibility to the heterologous HSV thymidine kinase (tk) promoter in a relative position- and orientation-independent manner. In this assay, the minimal B1 ERE is 33 bp long and consists of two 13 bp imperfect palindromic elements both of which are required for the enhancer activity. A third imperfect palindromic element is present further upstream within the 5'-flanking region of the gene but is unable to confer hormone responsiveness by itself. Similarly, neither element forming the B1 ERE can alone confer estrogen inducibility to the tk promoter. However, in combinations of two, all three imperfect palindromes can act cooperatively to form a functional ERE. In contrast a single 13 bp perfect palindromic element, GGTCACTGTGACC, such as the one found upstream of the vit gene A2, is itself sufficient to act as a fully active ERE. Single point mutations within this element abolish estrogen inducibility, while a defined combination of two mutations converts this ERE into a glucocorticoid-responsive element.