997 resultados para photosynthetic CO2 affinity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and rapid affinity chromatographic method for the isolation of aspartate transcarbamylase from germinated seedlings of mung bean (Phaseolus aureus) was developed. A partially purified preparation of the enzyme was chromatographed on an affinity column containing aspartate linked to CNBr-activated Sepharose 4B. Aspartate transcarbamylase was specifically eluted from the column with 10 mImage aspartate or 0.5 Image KCl. The enzyme migrated as a single sharp band during disc electrophoresis at pH 8.6 on polyacrylamide gels. Electrophoresis of the sodium dodecyl sulfate-treated enzyme showed two distinct protein bands, suggesting that the mung bean aspartate transcarbamylase was made up of nonidentical subunits. Like the enzyme purified by conventional procedures, this enzyme preparation also exhibited positive homotropic interactions with carbamyl phosphate and negative heterotropic interactions with UMP. This method was extended to the purification of aspartate transcarbamylase from Lathyrus sativus, Eleucine coracona, and Trigonella foenum graecum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on carbon uptake in boreal forests has mainly focused on mature trees, even though ground vegetation species are effective assimilators and can substantially contribute to the CO2 uptake of forests. Here, I examine the photosynthesis of the most common species of ground vegetation in a series of differently aged Scots pine stands, and at two clear-cut sites with substantial differences in fertility. In general, the biomass of evergreen species was highest at poor sites and below canopies, whereas grasses and herbs predominated at fertile sites and open areas. Unlike mosses, the measured vascular species showed clear annual cycles in their photosynthetic activity, which increased earlier and decreased later in evergreen vascular species than in deciduous species. However, intraspecific variation and self-shading create differences in the overall level of photosynthesis. Light, temperature history, soil moisture and recent possible frosts could explain the changes in photosynthesis of low shrubs and partially also some changes in deciduous species. Light and the occurrence of rain events explained most of the variation in the photosynthesis of mosses. The photosynthetic production of ground vegetation was first upscaled, using species-specific and mass-based photosynthetic activities and average biomass of the site, and then integrated over the growing season, using changes in environmental factors. Leaf mass-based photosynthesis was highest in deciduous species, resulting in notably higher photosynthetic production at fertile sites than at poor clear-cut sites. The photosynthetic production decreased with stand age, because flora changed towards evergreen species, and light levels diminished below the canopy. In addition, the leaf mass-based photosynthetic activity of some low shrubs declined with the age of the surrounding trees. Different measuring methods led to different momentary rate of photosynthesis. Therefore, the choice of measuring method needs special attention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supercritical carbon dioxide is used to prepare aerogels of two reference molecular organogelators, 2,3-bis-n-decyloxyanthracene (DDOA) (luminescent molecule) and 12-hydroxystearic acid (HSA). Electron microscopy reveals the fibrillar morphology of the aggregates generated by the protocol. SAXS and SANS measurements show that DDOA aerogels are crystalline materials exhibiting three morphs: (1) arrangements of the crystalline solid (2D p6m), (2) a second hexagonal morph slightly more compact, and (3) a packing specific of the fibers in the gel. Aggregates specific of the aerogel (volume fraction being typically phi approximate to 0.60) are developed over larger distances (similar to 1000 angstrom) and bear fewer defaults and residual strains than aggregates in the crystalline and gel phases. Porod, Scherrer and Debye-Bueche analyses of the scattering data have been performed. The first five diffraction peaks show small variations in position and intensity assigned to the variation of the number of fibers and their degree of vicinity within hexagonal bundles of the related SAFIN according to the Oster model. Conclusions are supported by the guidelines offered by the analysis of the situation in HSA aerogels for which the diffraction pattern can be described by two coexisting lamellar-like arrangements. The porosity of the aerogel, as measured by its specific surface extracted from the scattering invariant analysis, is only 1.8 times less than that of the swollen gel and is characteristic of a very porous material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is huge knowledge gap in our understanding of many terrestrial carbon cycle processes. In this paper, we investigate the bounds on terrestrial carbon uptake over India that arises solely due to CO (2) -fertilization. For this purpose, we use a terrestrial carbon cycle model and consider two extreme scenarios: unlimited CO2-fertilization is allowed for the terrestrial vegetation with CO2 concentration level at 735 ppm in one case, and CO2-fertilization is capped at year 1975 levels for another simulation. Our simulations show that, under equilibrium conditions, modeled carbon stocks in natural potential vegetation increase by 17 Gt-C with unlimited fertilization for CO2 levels and climate change corresponding to the end of 21st century but they decline by 5.5 Gt-C if fertilization is limited at 1975 levels of CO2 concentration. The carbon stock changes are dominated by forests. The area covered by natural potential forests increases by about 36% in the unlimited fertilization case but decreases by 15% in the fertilization-capped case. Thus, the assumption regarding CO2-fertilization has the potential to alter the sign of terrestrial carbon uptake over India. Our model simulations also imply that the maximum potential terrestrial sequestration over India, under equilibrium conditions and best case scenario of unlimited CO2-fertilization, is only 18% of the 21st century SRES A2 scenarios emissions from India. The limited uptake potential of the natural potential vegetation suggests that reduction of CO2 emissions and afforestation programs should be top priorities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium/calmodulin dependent protein kinase II (CaMKII) is implicated to play a key role in learning and memory. NR2B subunit of N-methyl-D-aspartate receptor (NMDAR) is a high affinity binding partner of CaMKII at the postsynaptic membrane. NR2B binds to the T-site of CaMKII and modulates its catalysis. By direct measurement using isothermal titration calorimetry (ITC), we show that NR2B binding causes about 11 fold increase in the affinity of CaMKII for ATP gamma S, an analogue of ATP. ITC data is also consistent with an ordered binding mechanism for CaMKII with ATP binding the catalytic site first followed by peptide substrate. We also show that dephosphorylation of phospho-Thr(286)-alpha-CaMKII is attenuated when NR2B is bound to CaMKII. This favors the persistence of Thr(286) autophosphorylated state of CaMKII in a CaMKII/phosphatase conjugate system in vitro. Overall our data indicate that the NR2B- bound state of CaMKII attains unique biochemical properties which could help in the efficient functioning of the proposed molecular switch supporting synaptic memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, it was found that a reduction in atmospheric CO2 concentration leads to a temporary increase in global precipitation. We use the Hadley Center coupled atmosphere-ocean model, HadCM3L, to demonstrate that this precipitation increase is a consequence of precipitation sensitivity to changes in atmospheric CO2 concentrations through fast tropospheric adjustment processes. Slow ocean cooling explains the longer-term decrease in precipitation. Increased CO2 tends to suppress evaporation/precipitation whereas increased temperatures tend to increase evaporation/precipitation. When the enhanced CO2 forcing is removed, global precipitation increases temporarily, but this increase is not observed when a similar negative radiative forcing is applied as a reduction of solar intensity. Therefore, transient precipitation increase following a reduction in CO2-radiative forcing is a consequence of the specific character of CO2 forcing and is not a general feature associated with decreases in radiative forcing. Citation: Cao, L., G. Bala, and K. Caldeira (2011), Why is there a short-term increase in global precipitation in response to diminished CO2 forcing?, Geophys. Res. Lett., 38, L06703, doi:10.1029/2011GL046713.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gasification of charcoal spheres in an atmosphere of carbon-dioxide-nitrogen mixture involving diffusion and reactions in the pores is modelled and the results are compared with experiments of Standish and Tanjung and those performed in the laboratory on wood-char spheres to determine the effects of diameter, density, gas composition and flow. The results indicate that the conversion time, t(c) approximately d1.03 for large particles (> 5 mm), departing substantially from the t(c) approximately d2 law valid for diffusion limited conditions. The computational studies indicate that the kinetic limit for the particle is below 100 mum. The conversion time varies inversely as the initial char density as expected in the model. Predictions from the model show that there is no significant change in conversion time up to 60% N2 consistent with the CO2-N2 experiments. The variation of diameter and density with time are predicted. The peculiar dependence of conversion time on flow velocity in the experiments is sought to be explained by opposing free and forced convection heat transfer and the attempt is only partly successful. The studies also indicate that the dependence on the CO concentration with low CO2 is significant, indicating the need for multistep reaction mechanism against the generally accepted single-step reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents the importance of the Nocturnal Boundary Layer in driving the diurnal variability of the atmospheric CO2 mixing ratio and the carbon isotope ratio at ground level from an urban station in India. Our observations are the first of their kind from this region. The atmospheric CO2 mixing ratio and the carbon isotopic ratio were measured for both the morning (05:30-07:30 IST) and afternoon time (16:00-18:00 IST) air samples at 5 m above ground level in Bangalore city, Karnataka State (12 degrees 58' N, 77 degrees 38' E, masl = 920 m) for a 10 day period during the winter of 2008. We observed a change of similar to 7% the in CO2 mixing ratio between the morning and afternoon time air samples. A stable isotope analysis of CO2 from morning samples showed a depletion in the carbon isotope ratio by similar to 2 parts per thousand compared to the afternoon samples. Along with the ground-based measurement of air samples, data of radiosonde measurements were also obtained from the Indian Meteorological Department to identify the vertical atmospheric structure at different time in a day. We proposed the presence or absence of the NBL as a controlling factor for the observed variability in the mixing ratio as well as its isotopic composition. Here we used the Keeling model approach to find out the carbon isotope ratio for the local sources. The local sources have further been characterized as anthropogenic and biological respiration (in %) using a two-component mixing model. We also used a vertical mixing model based on the concept of the mixing of isotopically depleted (carbon isotope) ``polluted air'' (PA) with isotopically enriched ``free atmospheric air'' (FA) above. Using this modeling approach, the contribution of FA at ground level is being estimated for both the morning and afternoon time air samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using Ru - SiO2 catalyst, the kinetics of methanation of carbon dioxide has been studied. In the temperature range of 320-460-degrees-C a simple power law model is found to predict experimental results with a good agreement over the range of variables studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urban lakes form vital ecosystems supporting livelihood with social, economic and aesthetic benefits that are essential for quality life. This depends on the biotic and abiotic components in an ecosystem. The structure of an ecosystem forms a decisive factor in sustaining its functional abilities which include nutrient cycling, oxygen production, etc. A community assemblage of primary producers (algae) plays a crucial role in maintaining the balance as they form the base of energy pyramid in the ecosystem. Algae assimilate carbon in the environment via photosynthetic activities and releases oxygen for the next level of biotic elements in an ecosystem. Besides these, algal cells rich in protein serve as food and feed, used as manure and for production of biofuels. Understanding algal photosynthetic dynamics helps in assessing the level of dissolved oxygen (DO), food (fish, etc.), waste assimilation, etc. Algal chlorophyll content, algal biomass, primary productivity and algal photosynthetic quotient are some of the parameters that help in assessing the status of urban lakes. Chlorophyll content gives a measure of the growth, spread and quantity of algae. Unplanned rapid urbanization in Bangalore in recent times has resulted in either disappearance of lake ecosystems or deteriorated the lake water quality impairing the ecological processes. This paper computes algal growth, community structure, primary productivity and composition for three major lakes (T G Halli, Bellandur and Varthur lakes) under contrast levels of anthropogenic influences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flavokinase was purified, for the first time from a plant source [mung bean (Phaseolus aureus)] by affinity chromatography in the presence of orthophosphate and by using C-8 ATP-agarose (ATP linked through the C-8 position to beaded agarose), Cibacron Blue and riboflavin--Sepharoses. An altered substrates-saturation pattern was observed in the presence of K2HPO4. The conformational changes of the enzyme in the presence of K2HPO4 were monitored by fluorescence spectroscopy. These results highlight the regulatory nature of this enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of DNA architectural proteins containing two functional domains derived from two different architectural proteins is an interesting emerging research theme in the field of nucleoid structure and function. Mycobacterium tuberculosis HupB, unlike Escherichia coli HU, is a two-domain protein that, in the N-terminal region, shows broad sequence homology with bacterial HU. The long C-terminal extension, on the other hand, contains seven PAKK/KAAK motifs, which are characteristic of the histone H1/H5 family of proteins. In this article, we describe several aspects of HupB function, in comparison with its truncated derivatives lacking either the C-terminus or N-terminus. We found that HupB binds a variety of DNA repair and replication intermediates with K(d) values in the nanomolar range. By contrast, the N-terminal fragment of M. tuberculosis HupB (HupB(MtbN)) showed diminished DNA-binding activity, with K(d) values in the micromolar range, and the C-terminal domain was completely devoid of DNA-binding activity. Unlike HupB(MtbN), HupB was able to constrain DNA in negative supercoils and introduce negative superhelical turns into relaxed DNA. Similarly, HupB exerted a robust inhibitory effect on DNA strand exchange promoted by cognate and noncognate RecA proteins, whereas HupB(MtbN), even at a 50-fold molar excess, had no inhibitory effect. Considered together, these results suggest that synergy between the N-terminal and C-terminal domains of HupB is essential for its DNA-binding ability, and to modulate the topological features of DNA, which has implications for processes such as DNA compaction, gene regulation, homologous recombination, and DNA repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of propagation of a normal shock wave in CO2‐N2‐He or H2 or H2O system seeded with solid particles is presented. The variation of translational and vibrational temperatures of gas phase and the particle temperatures in the relaxation zone behind the shock front are given in graphical form. These results show that the peak value of population inversion and the width of the inversion zone are highest for He catalyst and lowest for H2O catalyst.