919 resultados para phosphoproteome, HNSCC, irradiation, cyclooxygenase-inhibitor
Resumo:
Near-infrared to visible upconversion luminescence was observed in a multicomponent silicate (BK7) glass containing Ce3+ ions under focused infrared femtosecond laser irradiation. The emission spectra show that the upconversion luminescence comes from the 4f-5d transition of the Ce3+ ions. The relationship between the intensity of the Ce3+ emission and the pump power reveals that a three-photon absorption predominates in the conversion process from the near-infrared into the blue luminescence. The analysis of the upconversion mechanism suggests that the upconversion luminescence may come from a three-photon simultaneous absorption that leads to a population of the 5d level in which the characteristic luminescence occurs.
Resumo:
We report on the bluish green upconversion luminescence of niobium ions doped silicate glass by a femtosecond laser irradiation. The dependence of the fluorescence intensity on the pump power density of laser indicates that the conversion of infrared irradiation to visible emission is dominated by three-photon excitation process. We suggest that the charge transfer from O-2-to Nb5+ can efficiently contribute to the bluish green emission. The results indicate that transition metal ions without d electrons play an important role in fields of optics when embedded into silicate glass matrix. (C) 2008 Optical Society of America.
Resumo:
We report femtosecond laser induced valence state and refractive index change in transparent Sin(3+)-doped fluoroaluminate glass. The effect of annealing on the induced changes was studied and the thermal stability of these changes was discussed. The results show that the femtosecond laser induced valence state change is more stable than the induced refractive index change. The observed phenomenon could be applied to design the thermally erasable or stable storage medium. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Eu2+-doped high silica glass (HSG) is fabricated by sintering porous glass which is impregnated with europium ions. Eu2+-doped HSG is revealed to yield intense blue emission excited by ultraviolet (UV) light and near-infrared femtosecond laser. The emission profile obtained by UV excitation can be well traced by near-infrared femtosecond laser. The upconversion emission excited by 800 nm femtosecond laser is considered to be related to a two-photon absorption process from the relationship between the integrated intensity and the pump power. A tentative scheme of upconverted blue emission from Eu2+-doped HSG was also proposed. The HSG materials presented herein are expected to find applications in high density optical storage and three-dimensional color displays. (c) 2008 American Institute of Physics.
Resumo:
Visible upconversion luminescence was observed in Cr3+: Al2O3 crystal under focused femtosecond laser irradiation. The luminescence spectra show that the upconversion luminescence originates from the E-2-(4)A(2) transition of Cr3+. The dependence of the fluorescence intensity of Cr3+ on the pump power reveals that a two-photon absorption process dominates in the conversion of infrared radiation to the visible emission. It is suggested that the simultaneous absorption of two infrared photons produces the population of upper excited states, which leads to the characteristic visible emission from E-2 state of Cr3+.
Resumo:
The effects of gamma irradiation on as-grown 5 at% Yb:YAlO3 (YAP) and air annealing on gamma-irradiated 5 at% Yb: YAP have been studied by the difference in the absorption spectra before and after treatment. The gamma irradiation and air annealing led to opposite changes of the absorption properties of the Yb: YAP crystal. After air annealing, the gamma-irradiation effects were totally removed over the wavelength range 390-800 nm and the concentrations of Fe3+ and Yb3+ were slightly increased. For the first time, the gamma-irradiation-induced valence changes between Yb3+ and Yb2+ ions in Yb: YAP crystals have been observed. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
We found that Ce3+:Lu2Si2O7 single crystals could be excited at 800 nm by using a femtosecond Ti:sapphire laser. The emission spectra of Ce3+:Lu2Si2O7 crystals were the same for one-photon excitation at 267 nm as for excitation at 800 nm. The emission intensity of Ce3+: Lu2Si2O7 crystals was found to depend on the cube of the laser power at 800 nm, consistent with simultaneous absorption of three 800 nm photons. The measured value of the three-photon absorption cross section is sigma'(3) = 2.44 x 10(-77) cm(6) s(2). (c) 2006 Optical Society of America.
Resumo:
Blue frequency-upconversion fluorescence emission has been observed in Ce3+-doped Gd2SiO5 single crystals, pumped with 120-fs 800 nm IR laser pulses. The observed fluorescence emission peaks at about 440nm is due to 5d -> 4f transition of Ce3+ ions. The intensity dependence of the blue fluorescence emission on the IR excitation laser power obeys the cubic law, demonstrating three-photon absorption process. Analysis suggested that three-photon simultaneous absorption induced population inversion should be the predominant frequency upconversion mechanism. (c) 2006 Optical Society of America.
Three-photon-excited upconversion luminescence of Ce3+: YAP crystal by femtosecond laser irradiation
Resumo:
Infrared to ultraviolet and visible upconversion luminescence was demonstrated in trivalent cerium doped YAlO3 crystal (Ce3+: YAP) under focused infrared femtosecond laser irradiation. The fluorescence spectra show that the upconverted luminescence comes from the 5d-4f transitions of trivalent cerium ions. The dependence of luminescence intensity of trivalent cerium on infrared pumping power reveals that the conversion of infrared radiation is dominated by three-photon excitation process. It is suggested that the simultaneous absorption of three infrared photons pumps the Ce3+ ion into upper 5d level, which quickly nonradiatively relax to lowest 5d level. Thereafter, the ions radiatively return to the ground states, leading to the characteristic emission of Ce3+. (c) 2005 Optical Society of America.
Resumo:
The absorption spectra of the undoped Y2SiO5 and Eu3+-doped Y2SiO5 crystals grown by the Czochralski technique were compared before and after annealing and, similarly, the unannealed and annealed crystals after gamma-ray irradiation. The absorption bands of Eu2+ ions with peaks at 300 and 390 nm were observed in the as-grown Y2SiO5:Eu3+ crystal. These peaks were more intense in H-2-annealed and irradiated Y2SiO5:Eu3+ crystals. The additional absorption peaks at 260 and 320-330 nm which were attributed to F color centers and O- hole centers were observed in irradiated undoped Y2SiO5 and Y2SiO5:Eu3+ crystals, respectively. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The absorption spectra of undoped Y2SiO5 crystals were studied before and after gamma-irradiation. After gamma-irradiation, the additional absorption peaks at 260-270 and 320nm were observed in as-grown and H,annealed Y2SiO5 crystal, but it did not occur in air-annealed Y2SiO5 crystal. These absorption peaks were attributed to F color centers and O- hole centers, respectively. Owing to more oxygen vacancies and color centers in H-2-annealed Y2SiO5 crystal than that in as-grown Y2SiO5 crystal after gamma-irradiation, the additional absorption peaks were more intense in the former than that in the latter. With the irradiation dose increasing from 20 to 220kGy, the intensity of additional absorption peaks increased.
Resumo:
We have observed periodically aligned nanovoid structures inside a conventional borosilicate glass induced by a single femtosecond (fs) laser beam for the first time, to our knowledge. The spherical voids of nanosized diameter were aligned spontaneously with a period along the propagation direction of the laser beam. The period, the number of voids, and the whole length of the aligned void structure were controlled by changing the laser power, the pulse number, and the position of the focal point.
Resumo:
We report on photoreduction of Ag+ in aluminoborate glasses induced by irradiation of a femtosecond laser. Novel fluorescence was observed in the femtosecond laser irradiated glass when excited by a 365 nm ultraviolet lamp. Optical absorption, emission, and electron spin resonance spectra of the glass samples demonstrated that after the laser irradiation, portions of silver ions near the focused part of the laser beam inside the glass were reduced to silver atoms, which resulted in the formation of the characteristic fluorescence. The observed phenomenon may have promising applications in the fabrication of functional optical devices.