975 resultados para phosphatase activity
Resumo:
Background. Tooth bleaching has been widely studied, mainly due to the possible undesirable effects that can be caused by this esthetic procedure. The cytotoxicity of the bleaching agents and its components to pulp cells has been demonstrated in several researches. The aim of this study was to evaluate the toxic effects of successive applications of 10% carbamide peroxide (CP) gel on odontoblast-like cells. Materials and methods. Enamel-dentin discs obtained from bovine incisors were adapted to artificial pulp chambers (APCs). The groups were formed as follows: G1: Without treatment (control group); G2: 10% carbamide peroxide, CP (five applications/one per day); G3: 10% CP (one unique application); and G4: 35% hydrogen peroxide, HP (three applications of 15 min each). After treatment, cell metabolism (MTT), alkaline phosphatase (ALP) activity and plasma membrane damage (flow cytometry) were analyzed. Results. Reductions in cell metabolism and alkaline phosphatase activity along with severe damage of the cytoplasmic membrane were noted in G2. In G3, no damage was observed, compared to the control group. Intermediary values of toxicity were obtained after 35% HP application. Conclusion. It can be concluded that one application of 10% CP did not cause toxic effects in odontoblast-like cells, but the successive application of this product promoted severe cytotoxic effects. The daily application of the bleaching agents, such as used in the at-home bleaching technique, can increase the damages caused by this treatment to the dental pulp cells. © 2013 Informa Healthcare.
Resumo:
The ecotoxicology of nano-TiO2 has been extensively studied in recent years; however, few toxicological investigations have considered the photocatalytic properties of the substance, which can increase its toxicity to aquatic biota. The aim of this work was to evaluate the effects on fish exposed to different nano-TiO2 concentrations and illumination conditions. The interaction of these variables was investigated by observing the survival of the organisms, together with biomarkers of biochemical and genetic alterations. Fish (Piaractus mesopotamicus) were exposed for 96h to 0, 1, 10, and 100mg/L of nano-TiO2, under visible light, and visible light with ultraviolet (UV) light (22.47J/cm2/h). The following biomarkers of oxidative stress were monitored in the liver: concentrations of lipid hydroperoxide and carbonylated protein, and specific activities of superoxide dismutase, catalase, and glutathione S-transferase. Other biomarkers of physiological function were also studied: the specific activities of acid phosphatase and Na,K-ATPase were analyzed in the liver and brain, respectively, and the concentration of metallothionein was measured in the gills. In addition, micronucleus and comet assays were performed with blood as genotoxic biomarkers. Nano-TiO2 caused no mortality under any of the conditions tested, but induced sublethal effects that were influenced by illumination condition. Under both illumination conditions tested, exposure to 100mg/L showed an inhibition of acid phosphatase activity. Under visible light, there was an increase in metallothionein level in fish exposed to 1mg/L of nano-TiO2. Under UV light, protein carbonylation was reduced in groups exposed to 1 and 10mg/L, while nucleus alterations in erythrocytes were higher in fish exposed to 10mg/L. As well as improving the understanding of nano-TiO2 toxicity, the findings demonstrated the importance of considering the experimental conditions in nanoecotoxicological tests. This work provides information for the development of protocols to study substances whose toxicity is affected by illumination conditions. © 2013 Elsevier B.V..
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Pediatria - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Zootecnia - FCAV