551 resultados para permafrost


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ground surface temperature is one of the key parameters that determine the thermal regime of permafrost soils in arctic regions. Due to remoteness of most permafrost areas, monitoring of the land surface temperature (LST) through remote sensing is desirable. However, suitable satellite platforms such as MODIS provide spatial resolutions, that cannot resolve the considerable small-scale heterogeneity of the surface conditions characteristic for many permafrost areas. This study investigates the spatial variability of summer surface temperatures of high-arctic tundra on Svalbard, Norway. A thermal imaging system mounted on a mast facilitates continuous monitoring of approximately 100 x 100 m of tundra with a wide variability of different surface covers and soil moisture conditions over the entire summer season from the snow melt until fall. The net radiation is found to be a control parameter for the differences in surface temperature between wet and dry areas. Under clear-sky conditions in July, the differences in surface temperature between wet and dry areas reach up to 10K. The spatial differences reduce strongly in weekly averages of the surface temperature, which are relevant for the soil temperature evolution of deeper layers. Nevertheless, a considerable variability remains, with maximum differences between wet and dry areas of 3 to 4K. Furthermore, the pattern of snow patches and snow-free areas during snow melt in July causes even greater differences of more than 10K in the weekly averages. Towards the end of the summer season, the differences in surface temperature gradually diminish. Due to the pronounced spatial variability in July, the accumulated degree-day totals of the snow-free period can differ by more than 60% throughout the study area. The terrestrial observations from the thermal imaging system are compared to measurements of the land surface temperature from the MODIS sensor. During periods with frequent clear-sky conditions and thus a high density of satellite data, weekly averages calculated from the thermal imaging system and from MODIS LST agree within less than 2K. Larger deviations occur when prolonged cloudy periods prevent satellite measurements. Futhermore, the employed MODIS L2 LST data set contains a number of strongly biased measurements, which suggest an admixing of cloud top temperatures. We conclude that a reliable gap filling procedure to moderate the impact of prolonged cloudy periods would be of high value for a future LST-based permafrost monitoring scheme. The occurrence of sustained subpixel variability of the summer surface temperature is a complicating factor, whose impact needs to be assessed further in conjunction with other spatially variable parameters such as the snow cover and soil properties.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although ponds make up roughly half of the total area of surface water in permafrost landscapes, their relevance to carbon dioxide emissions on a landscape scale has, to date, remained largely unknown. We have therefore investigated the inflows and outflows of dissolved organic and inorganic carbon from lakes, ponds, and outlets on Samoylov Island, in the Lena Delta of northeastern Siberia in September 2008, together with their carbon dioxide emissions. Outgassing of carbon dioxide (CO2) from these ponds and lakes, which cover 25% of Samoylov Island, was found to account for between 74 and 81% of the calculated net landscape-scale CO2 emissions of 0.2-1.1 g C/m**2/d during September 2008, of which 28-43% was from ponds and 27-46% from lakes. The lateral export of dissolved carbon was negligible compared to the gaseous emissions due to the small volumes of runoff. The concentrations of dissolved inorganic carbon in the ponds were found to triple during freezeback, highlighting their importance for temporary carbon storage between the time of carbon production and its emission as CO2. If ponds are ignored the total summer emissions of CO2-C from water bodies of the islands within the entire Lena Delta (0.7-1.3 Tg) are underestimated by between 35 and 62%.