953 resultados para peacock flower
Resumo:
To characterise the physiology of development and senescence for Grevillea 'Sylvia'. oral organs, respiration, ethylene production and ACC concentrations in harvested flowers and flower parts were measured. The respiration rate of harvested inflorescences decreased over time during senescence. In contrast, both ethylene production and ACC concentration increased. Individual flowers, either detached from cut inflorescences held in vases at 20degreesC or detached from in planta inflorescences at various stages of development, had similar patterns of change in ACC concentration and rates of respiration and ethylene production as whole inflorescences. The correlation between ACC concentration and ethylene production by individual flowers detached from cut inflorescences held in vases was poor (r(2)=0.03). The isolated complete gynoecium (inclusive of the pedicel) produced increasing amounts of ethylene during development. Further sub-division of flower parts and measurement of their ethylene production at various stages of development revealed that the distal part of the gynoecium (inclusive of the stigma) had the highest rate of ethylene production. In turn, anthers had higher rates of ethylene production and also higher ACC concentrations than the proximal part of the gynoecium (inclusive of the ovary). Rates of ethylene production and ACC concentrations for tepal abscission zone tissue and adjacent central tepal zone tissue were similar. ACC concentration in pollen was similar to that in senescing perianth tissue. Overall, respiration, ethylene and ACC content measurements suggest that senescence of G. 'Sylvia' is non-climacteric in character. Nonetheless, the phytohormone ethylene is produced and evidently mediates normal flower development and non-climacteric senescence processes.
Resumo:
The observation that snakes and spiders are found faster among flowers and mushrooms than vice versa and that this search advantage is independent of set size supports the notion that fear-relevant stimuli are processed preferentially in a dedicated fear module. Experiment I replicated the faster identification of snakes and spiders but also found a set size effect in a blocked, but not in a mixed-trial, sequence. Experiment 2 failed to find faster identification of snake and spider deviants relative to other animals among flowers and mushrooms and provided evidence for a search advantage for pictures of animals, irrespective of their fear relevance. These findings suggest that results from the present visual search task cannot support the notion of preferential processing of fear relevance.
Resumo:
The vase-life of Alstroemeria (cv. Rebecca) flowers is terminated when the tepals abscise. Abscission was accelerated by both chloroethylphosphonic acid (CEPA) and 1-aminocyclopropane-1-carboxylic acid (ACC). Petals abscised 24 h earlier compared with controls, when isolated cymes were placed in 340 nM CEPA, and earlier still when higher concentrations were used. This suggests that flowers of this Alstroemeria cultivar are very ethylene sensitive. Treatment with silver thiosulphate (STS) overcame the effects of exposure to CEPA and delayed perianth abscission of untreated isolated flowers by 3-4 days. The inclusion of 1% sucrose in the vase solution also extended longevity but not by as much as STS treatment; combined STS and sucrose treatments did not increase longevity beyond that of either treatment alone. However, removal of the young buds from the axil of the first flower was the most effective treatment to extend vase-life and encouraged the growth and development of the remaining flower. Flowers on cut inflorescences from which young axillary buds were trimmed more than doubled in fresh weight 6 days after flower opening compared with an increase of only 70-80% in those untreated or treated with STS and/or sucrose. Growth was less in isolated cymes but followed a similar pattern. The effect of STS and/or sucrose treatment was synergistic with the trimming treatment and thus the vase-life of trimmed, STS and sucrose-treated flowers was over 7 days longer than that for untreated controls. © 2003 Elsevier B.V. All rights reserved.
Resumo:
The subtropical hardwood forests of southern Florida are formed by 120 frost-sensitive, broadleaved angiosperm species that range throughout the Caribbean. Previous work on a series of small sized forest component patches of a 20 km2, forest preserve in northern Key Largo indicate that a shift in species composition was associated with a 100 year forest developmental sequence, and this shift was associated with an increasingly evergreen canopy. This document investigates the underlying differences of the biology of trees that live in this habitat, and is specifically focused on the impact of leaf morphology on changing nutrient cycling patterns. Measurements of the area, thickness, dry mass, nutrient content and longevity of several leaves from 3-4 individuals of ten species were conducted in combination with a two-year leaf litter collection and nutrient analysis to determine that species with thicker, denser leaves cycled scarce nutrients up to 2-3 times more efficiently than thin leaved tree species, and the leaf thickness/density index predicts role in forest development in a parallel direction as the index predicts nutrient cycling efficiency. A three year set of observations on the relative abundance of new leaves, flowers and fruits of the same tree species provides an opportunity to evaluate the consequences the leaf morphology/nutrient cycling/forest development relationship to forest habitat quality. Results of the three documents support a mechanistic link between forest development and nutrient cycling, and suggests that older forests are likely to be better habitats based on the availability of valuable forest products like new leaves, flowers, and fruits throughout the year.
Resumo:
Frost flowers are ice crystals that grow on refreezing sea ice leads in Polar Regions by wicking brine from the sea ice surface and accumulating vapor phase condensate. These crystals contain high concentrations of mercury (Hg) and are believed to be a source of reactive halogens, but their role in Hg cycling and impact on the fate of Hg deposited during atmospheric mercury depletion events (AMDEs) are not well understood. We collected frost flowers growing on refreezing sea ice near Barrow, Alaska (U.S.A.) during an AMDE in March 2009 and measured Hg concentrations and Hg stable isotope ratios in these samples to determine the origin of Hg associated with the crystals. We observed decreasing Delta199Hg values in the crystals as they grew from new wet frost flowers (mean Delta199Hg = 0.77 ± 0.13 per mil, 1 s.d.) to older dry frost flowers (mean Delta199Hg = 0.10 ± 0.05 per mil, 1 s.d.). Over the same time period, mean Hg concentrations in these samples increased from 131 ± 6 ng/L (1 s.d.) to 180 ± 28 ng/L (1 s.d.). Coupled with a previous study of Hg isotopic fractionation during AMDEs, these results suggest that Hg initially deposited to the local snowpack was subsequently reemitted during photochemical reduction reactions and ultimately accumulated on the frost flowers. As a result of this process, frost flowers may lead to enhanced local retention of Hg deposited during AMDEs and may increase Hg loading to the Arctic Ocean.
Resumo:
Planted meadows are increasingly used to improve the biodiversity and aesthetic amenity value of urban areas. Although many ‘pollinator-friendly’ seed mixes are available, the floral resources these provide to flower-visiting insects, and how these change through time, are largely unknown. Such data are necessary to compare the resources provided by alternative meadow seed mixes to each other and to other flowering habitats. We used quantitative surveys of over 2 million flowers to estimate the nectar and pollen resources offered by two exemplar commercial seed mixes (one annual, one perennial) and associated weeds grown as 300m2 meadows across four UK cities, sampled at six time points between May and September 2013. Nectar sugar and pollen rewards per flower varied widely across 65 species surveyed, with native British weed species (including dandelion, Taraxacum agg.) contributing the top five nectar producers and two of the top ten pollen producers. Seed mix species yielding the highest rewards per flower included Leontodon hispidus, Centaurea cyanus and C. nigra for nectar, and Papaver rhoeas, Eschscholzia californica and Malva moschata for pollen. Perennial meadows produced up to 20x more nectar and up to 6x more pollen than annual meadows, which in turn produced far more than amenity grassland controls. Perennial meadows produced resources earlier in the year than annual meadows, but both seed mixes delivered very low resource levels early in the year and these were provided almost entirely by native weeds. Pollen volume per flower is well predicted statistically by floral morphology, and nectar sugar mass and pollen volume per unit area are correlated with flower counts, raising the possibility that resource levels can be estimated for species or habitats where they cannot be measured directly. Our approach does not incorporate resource quality information (for example, pollen protein or essential amino acid content), but can easily do so when suitable data exist. Our approach should inform the design of new seed mixes to ensure continuity in floral resource availability throughout the year, and to identify suitable species to fill resource gaps in established mixes.