883 resultados para patch clamp glioblastoma t98g pedot:pss
Resumo:
The small HIV-1 accessory protein Vpr (virus protein R) is a multifunctional protein that is present in the serum and cerebrospinal fluid of AIDS patients. We previously showed that Vpr can form cation-selective ion channels across planar lipid bilayers, introducing the possibility that, if incorporated into the membranes of living cells, Vpr might form ion channels and consequently perturb the maintained ionic gradient. In this study, we demonstrate, by a variety of approaches, that Vpr added extracellularly to intact cells does indeed form ion channels. We use confocal laser scanning microscopy to examine the subcellular localization of fluorescently labeled Vpr. Plasmalemma depolarization and damage are examined using the anionic potential-sensitive dye bis(1,3-dibutylbarbituric acid) trimethine oxonol and propidium iodide (PI), respectively, and the effect of Vpr on whole-cell current is demonstrated directly by using the patch-clamp technique. We show that recombinant purified extracellular Vpr associates with the plasmalemma of hippocampal neurons to cause a large inward cation current and depolarization of the plasmalemma, eventually resulting in cell death. Thus, we demonstrate a physiological action of extracellular Vpr and present its mechanistic basis. These findings may have important implications for neuropathologies in AIDS patients who possess significant amounts of Vpr in the cerebrospinal fluid.
Resumo:
Many neurons of the central nervous system display multiple high voltage-activated Ca2+ currents, pharmacologically classified as L-, N-, P-, Q-, and R-type. Of these current types, the R-type is the least understood. The leading candidate for the molecular correlate of R-type currents in cerebellar granule cells is the α1E subunit, which yields Ca2+ currents very similar to the R-type when expressed in heterologous systems. As a complementary approach, we tested whether antisense oligonucleotides against α1E could decrease the expression of R-type current in rat cerebellar granule neurons in culture. Cells were supplemented with either antisense or sense oligonucleotides and whole-cell patch clamp recordings were obtained after 6–8 days in vitro. Incubation with α1E antisense oligonucleotide caused a 52.5% decrease in the peak R-type current density, from −10 ± 0.6 picoamperes/picofarad (pA/pF) (n = 6) in the untreated controls to −4.8 ± 0.8 pA/pF (n = 11) (P < 0.01). In contrast, no significant changes in the current expression were seen in sense oligonucleotide-treated cells (−11.3 ± 3.2 pA/pF). The specificity of the α1E antisense oligonucleotides was supported by the lack of change in estimates of the P/Q current amplitude. Furthermore, antisense and sense oligonucleotides against α1A did not affect R-type current expression (−11.5 ± 1.7 and −11.7 ± 1.7 pA/pF, respectively), whereas the α1A antisense oligonucleotide significantly reduced whole cell currents under conditions in which P/Q current is dominant. Our results support the hypothesis that members of the E class of α1 subunits support the high voltage-activated R-type current in cerebellar granule cells.
Resumo:
We have studied the effect of the cholinergic agonist carbachol on the spontaneous release of glutamate in cultured rat hippocampal cells. Spontaneous excitatory postsynaptic currents (sEPSCs) through glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type channels were recorded by means of the patch-clamp technique. Carbachol increased the frequency of sEPSCs in a concentration-dependent manner. The kinetic properties of the sEPSCs and the amplitude distribution histograms were not affected by carbachol, arguing for a presynaptic site of action. This was confirmed by measuring the turnover of the synaptic vesicular pool by means of the fluorescent dye FM 1–43. The carbachol-induced increase in sEPSC frequency was not mimicked by nicotine, but could be blocked by atropine or by pirenzepine, a muscarinic cholinergic receptor subtype M1 antagonist. Intracellular Ca2+ signals recorded with the fluorescent probe Fluo-3 indicated that carbachol transiently increased intracellular Ca2+ concentration. Since, however, carbachol still enhanced the sEPSC frequency in bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetate-loaded cells, this effect could not be attributed to the rise in intracellular Ca2+ concentration. On the other hand, the protein kinase inhibitor staurosporine as well as a down-regulation of protein kinase C by prolonged treatment of the cells with 4β-phorbol 12-myristate 13-acetate inhibited the carbachol effect. This argues for an involvement of protein kinase C in presynaptic regulation of spontaneous glutamate release. Adenosine, which inhibits synaptic transmission, suppressed the carbachol-induced stimulation of sEPSCs by a G protein-dependent mechanism activated by presynaptic A1-receptors.
Resumo:
Nuclear pore complexes (NPCs) mediate both active transport and passive diffusion across the nuclear envelope (NE). Determination of NE electrical conductance, however, has been confounded by the lack of an appropriate technical approach. The nuclear patch clamp technique is restricted to preparations with electrically closed NPCs, and microelectrode techniques fail to resolve the extremely low input resistance of large oocyte nuclei. To address the problem, we have developed an approach for measuring the NE electrical conductance of Xenopus laevis oocyte nuclei. The method uses a tapered glass tube, which narrows in its middle part to 2/3 of the diameter of the nucleus. The isolated nucleus is sucked into the narrow part of the capillary by gentle fluid movement, while the resulting change in electrical resistance is monitored. NE electrical conductance was unexpectedly large (7.9 ± 0.34 S/cm2). Evaluation of NPC density by atomic force microscopy showed that this conductance corresponded to 3.7 × 106 NPCs. In contrast to earlier conclusions drawn from nuclear patch clamp experiments, NPCs were in an electrically “open” state with a mean single NPC electrical conductance of 1.7 ± 0.07 nS. Enabling or blocking of active NPC transport (accomplished by the addition of cytosolic extracts or gp62-directed antibodies) revealed this large NPC conductance to be independent of the activation state of the transport machinery located in the center of NPCs. We conclude that peripheral channels, which are presumed to reside in the NPC subunits, establish a high ionic permeability that is virtually independent of the active protein transport mechanism.
Resumo:
The sperm acrosome reaction is a Ca2+-dependent exocytotic event that is triggered by adhesion to the mammalian egg’s zona pellucida. Previous studies using ion-selective fluorescent probes suggested a role of voltage-sensitive Ca2+ channels in acrosome reactions. Here, whole-cell patch clamp techniques are used to demonstrate the expression of functional T-type Ca2+ channels during mouse spermatogenesis. The germ cell T current is inhibited by antagonists of T-type channels (pimozide and amiloride) as well as by antagonists whose major site of action is the somatic cell L-type Ca2+ channel (1,4-dihydropyridines, arylalkylamines, benzothiazapines), as has also been reported for certain somatic cell T currents. In sperm, inhibition of T channels during gamete interaction inhibits zona pellucida-dependent Ca2+ elevations, as demonstrated by ion-selective fluorescent probes, and also inhibits acrosome reactions. These studies directly link sperm T-type Ca2+ channels to fertilization. In addition, the kinetics of channel inhibition by 1,4-dihydropyridines suggests a mechanism for the reported contraceptive effects of those compounds in human males.
Resumo:
The superficial gray layer of the superior colliculus contains a map that represents the visual field, whereas the underlying intermediate gray layer contains a vector map of the saccades that shift the direction of gaze. These two maps are aligned so that a particular region of the visual field is represented directly above the neurons that orient the highest acuity area of the retina toward that region. Although it has been proposed that the transmission of information from the visuosensory to the motor map plays an important role in the generation of visually guided saccades, experiments have failed to demonstrate any functional linkage between the two layers. We examined synaptic transmission between these layers in vitro by stimulating the superficial layer while using whole-cell patch-clamp methods to measure the responses of intermediate layer neurons. Stimulation of superficial layer neurons evoked excitatory postsynaptic currents in premotor cells. This synaptic input was columnar in organization, indicating that the connections between the layers link corresponding regions of the visuosensory and motor maps. Excitatory postsynaptic currents were large enough to evoke action potentials and often occurred in clusters similar in duration to the bursts of action potentials that premotor cells use to command saccades. Our results indicate the presence of functional connections between the superficial and intermediate layers and show that such connections could play a significant role in the generation of visually guided saccades.
Resumo:
We recently cloned an inward-rectifying K channel (Kir) cDNA, CCD-IRK3 (mKir 2.3), from a cortical collecting duct (CCD) cell line. Although this recombinant channel shares many functional properties with the “small-conductance” basolateral membrane Kir channel in the CCD, its precise subcellular localization has been difficult to elucidate by conventional immunocytochemistry. To circumvent this problem, we studied the targeting of several different epitope-tagged CCD-IRK3 in a polarized renal epithelial cell line. Either the 11-amino acid span of the vesicular stomatitis virus (VSV) G glycoprotein (P5D4 epitope) or a 6-amino acid epitope of the bovine papilloma virus capsid protein (AU1) was genetically engineered on the extreme N terminus of CCD-IRK3. As determined by patch-clamp and two-microelectrode voltage-clamp analyses in Xenopus oocytes, neither tag affected channel function; no differences in cation selectivity, barium block, single channel conductance, or open probability could be distinguished between the wild-type and the tagged constructs. MDCK cells were transfected with tagged CCD-IRK3, and several stable clonal cell lines were generated by neomycin-resistance selection. Immunoprecipitation studies with anti-P5D4 or anti-AU1 antibodies readily detected the predicted-size 50-kDa protein in the transfected cells lines but not in wild-type or vector-only (PcB6) transfected MDCK cells. As visualized by indirect immunofluorescence and confocal microscopy, both the tagged CCD-IRK3 forms were exclusively detected on the basolateral membrane. To assure that the VSV G tag was not responsible for the targeting, the P5D4 epitope modified by a site-directed mutagenesis (Y2F) to remove a potential basolateral targeting signal contained in this tag. VSV(Y2F) was also detected exclusively on the basolateral membrane, confirming bona fide IRK3 basolateral expression. These observations, with our functional studies, suggest that CCD-IRK3 may encode the small-conductance CCD basolateral K channel.
Resumo:
ATP-sensitive potassium (“KATP”) channels are rapidly inhibited by intracellular ATP. This inhibition plays a crucial role in the coupling of electrical activity to energy metabolism in a variety of cells. The KATP channel is formed from four each of a sulfonylurea receptor (SUR) regulatory subunit and an inwardly rectifying potassium (Kir6.2) pore-forming subunit. We used systematic chimeric and point mutagenesis, combined with patch-clamp recording, to investigate the molecular basis of ATP-dependent inhibition gating of mouse pancreatic β cell KATP channels expressed in Xenopus oocytes. We identified distinct functional domains of the presumed cytoplasmic C-terminal segment of the Kir6.2 subunit that play an important role in this inhibition. Our results suggest that one domain is associated with inhibitory ATP binding and another with gate closure.
Resumo:
Although many proteins essential for regulated neurotransmitter and peptide hormone secretion have been identified, little is understood about their precise roles at specific stages of the multistep pathway of exocytosis. To study the function of CAPS (Ca2+-dependent activator protein for secretion), a protein required for Ca2+-dependent exocytosis of dense-core vesicles, secretory responses in single rat melanotrophs were monitored by patch-clamp membrane capacitance measurements. Flash photolysis of caged Ca2+ elicited biphasic capacitance increases consisting of rapid and slow components with distinct Ca2+ dependencies. A threshold of ≈10 μM Ca2+ was required to trigger the slow component, while the rapid capacitance increase was recorded already at a intracellular Ca2+ activity < 10 μM. Both kinetic membrane capacitance components were abolished by botulinum neurotoxin B or E treatment, suggesting involvement of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-dependent vesicle fusion. The rapid but not the slow component was inhibited by CAPS antibody. These results were further clarified by immunocytochemical studies that revealed that CAPS was present on only a subset of dense-core vesicles. Overall, the results indicate that dense-core vesicle exocytosis in melanotrophs occurs by two parallel pathways. The faster pathway exhibits high sensitivity to Ca2+ and requires the presence of CAPS, which appears to act at a late stage in the secretory pathway.
Resumo:
Using patch-clamp capacitance and amperometric techniques, we have identified an exocytotic phenotype that affects the function of the fusion pore, the molecular structure that connects the lumen of a secretory vesicle with the extracellular environment during exocytosis. Direct observation of individual exocytotic events in mast cells from the ruby-eye mouse (ru/ru) showed a 3-fold increase in the fraction and duration of transient fusion events with respect to wild-type mice. The fraction of the total fusion events that were transient increased from 0.22 ± 0.02 (wild type) to 0.65 ± 0.02 (ru/ru), and the average duration of these events increased from 418 ± 32 ms (wild type) to 1207 ± 89 ms (ru/ru). We also show that this phenotype can reduce and delay an evoked secretory response by causing the fusion of vesicles that have been previously emptied by repeated cycles of transient fusion. The exocytotic phenotype that we describe here may be a cause of diseases like platelet storage pool deficiency and prolonged bleeding times for which the ruby-eye mouse serves as an animal model. Furthermore, the identification of the gene causing the fusion pore phenotype reported here will illuminate the molecular mechanisms regulating exocytotic fusion.
Resumo:
Slow nonselective cation conductances play a central role in determining the excitability of many neurons, but heretofore this channel type has not been analyzed at the single-channel level. Neurotensin (NT) excites cultured dopaminergic neurons from the ventral tegmental area primarily by increasing such a cation conductance. Using the outside–out configuration of the patch clamp, we elicited single-channel activity of this NT-induced cation channel. Channel activity was blocked by the nonpeptide NT antagonist SR48692, indicating that the response was mediated by NT receptors. The channel opened in both solitary form and in bursts. The reversal potential was −4.2 ± 1.7 mV, and the elementary conductance was 31 pS at −67 mV with [Na+]o = 140 mM, [Cs+]o = 5 mM, [Na+]i = 88 mM, and [Cs+]i = 74 mM. Thus, the channel was permeable to both Na+ and Cs+. From these characteristics, it is likely that this channel is responsible for the whole-cell current we studied previously. In guanosine 5′-[γ-thio]triphosphate-loaded cells, NT irreversibly activated about half of the channel activity, suggesting that at least part of the response was mediated by a G protein. Similar channel activity could be induced occasionally in the cell-attached configuration by applying NT outside the patch region.
Resumo:
Functionally significant stretch-activated ion channels have been clearly identified in excitable cells. Although single-channel studies suggest their expression in other cell types, their activity in the whole-cell configuration has not been shown. This discrepancy makes their physiological significance doubtful and suggests that their mechanical activation is artifactual. Possible roles for these molecules in nonexcitable cells are acute cell-volume regulation and, in epithelial cells, the complex adjustment of ion fluxes across individual cell membranes when the rate of transepithelial transport changes. We report the results of experiments on isolated epithelial cells expressing in the basolateral membrane stretch-activated K+ channels demonstrable by the cell-attached patch-clamp technique. In these cells, reversible whole-cell currents were elicited by both isosmotic and hyposmotic cell swelling. Cation selectivity and block by inorganic agents were the same for single-channel and whole-cell currents, indicating that the same entity underlies single-channel and whole-cell currents and that the single-channel events are not artifactual. In these cells, when the rate of apical-membrane NaCl entry increases, the cell Na+ content and volume also increase, stimulating the Na+,K+-ATPase at the basolateral membrane, i.e., both Na+ extrusion and K+ uptake increase. We speculate that, under these conditions, the parallel activation of basolateral K+ channels (by the swelling) elevates conductive K+ loss, tending to maintain the cell K+ content constant (“pump-leak parallelism”). This study describes a physiologically relevant stretch-activated channel, at both the single-channel and whole-cell levels, in a nonneural cell type.
Resumo:
Leptin acts as a potent inhibitory factor against obesity by regulating energy expenditure, food intake, and adiposity. The obese diabetic db/db mouse, which has defects in leptin receptor, displays enhanced neural responses and elevated behavioral preference to sweet stimuli. Here, we show the effects of leptin on the peripheral taste system. An administration of leptin into lean mice suppressed responses of peripheral taste nerves (chorda tympani and glossopharyngeal) to sweet substances (sucrose and saccharin) without affecting responses to sour, salty, and bitter substances. Whole-cell patch-clamp recordings of activities of taste receptor cells isolated from circumvallate papillae (innervated by the glossopharyngeal nerve) demonstrated that leptin activated outward K+ currents, which resulted in hyperpolarization of taste cells. The db/db mouse with impaired leptin receptors showed no such leptin suppression. Taste tissue (circumvallate papilla) of lean mice expressed leptin-receptor mRNA and some of the taste cells exhibited immunoreactivities to antibodies of the leptin receptor. Taken together, these observations suggest that the taste organ is a peripheral target for leptin, and that leptin may be a sweet-sensing modulator (suppressor) that may take part in regulation of food intake. Defects in this leptin suppression system in db/db mice may lead to their enhanced peripheral neural responses and enhanced behavioral preferences for sweet substances.
Resumo:
CD95/Fas/APO-1 mediated apoptosis is an important mechanism in the regulation of the immune response. Here, we show that CD95 receptor triggering activates an outwardly rectifying chloride channel (ORCC) in Jurkat T lymphocytes. Ceramide, a lipid metabolite synthesized upon CD95 receptor triggering, also induces activation of ORCC in cell-attached patch clamp experiments. Activation is mediated by Src-like tyrosine kinases, because it is abolished by the tyrosine kinase inhibitor herbimycin A or by genetic deficiency of p56lck. In vitro incubation of excised patches with purified p56lck results in activation of ORCC, which is partially reversed upon addition of anti-phosphotyrosine antibody. Inhibition of ORCC by four different drugs correlates with a 30–65% inhibition of apoptosis. Intracellular acidification observed upon CD95 triggering is abolished by inhibition of either ORCC or p56lck. The results suggest that tyrosine kinase-mediated activation of ORCC may play a role in CD95-induced cell death in T lymphocytes.
Resumo:
Regulation of nonspecific cation channels often underlies neuronal bursting and other prolonged changes in neuronal activity. In bag cell neurons of Aplysia, it recently has been suggested that an intracellular messenger-induced increase in the activity of a nonspecific cation channel may underlie the onset of a 30-min period of spontaneous action potentials referred to as the “afterdischarge.” In patch clamp studies of the channel, we show that the open probability of the channel can be increased by an average of 10.7-fold by application of ATP to the cytoplasmic side of patches. Duration histograms indicate that the increase is primarily a result of a reduction in the duration and percentage of channel closures described by the slowest time constant. The increase in open probability was not observed using 5′-adenylylimidodiphosphate, a nonhydrolyzable ATP analog, and was blocked in the presence of H7 or the more specific calcium/phospholipid-dependent protein kinase C (PKC) inhibitor peptide(19–36). Because the increase in activity observed in response to ATP occurred without application of protein kinase, our results indicate that a kinase endogenous to excised patches mediates the effect. The effect of ATP could be reversed by exogenously applied protein phosphatase 1 or by a microcystin-sensitive phosphatase also endogenous to excised patches. These results, together with work demonstrating the presence of a protein tyrosine phosphatase in these patches, suggest that the cation channel is part of a regulatory complex including at least three enzymes. This complex may act as a molecular switch to activate the cation channel and, thereby, trigger the afterdischarge.