975 resultados para non-isothermal kinetic


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Síntesi de nous complexos de Ruteni amb lligands no quirals que tenen per fórmula [Ru(phen)([9]aneS3)X] (on X = H2O, py i MeCN). Caracterització espectroscòpica electroquímica i estructural d'aquesta família de complexos. Estudi de les seves propietats catalítiques en front a l'oxidació de substrats orgànics com l'alcohol benzílic en reaccions d'electrocatàlisi. Avaluació cinètica dels mecanismes de substitució entre els complexos Ru-py i Ru-MeCN. Generació d'un interruptor molecular foto-induït. Síntesi de nous complexos quirals de Ru atropoisomèricament purs amb lligands oxazolínics que tenen per fórmula [Ru(trpy)(Ph-box-R)X] on (X = Cl, H2O, py, MeCN, 2-OH-py). Caracterització estructural exhaustiva en estat sòlid (Raig-X) en solució (RMN) i en fase gas (càlculs DFT). Avaluació de la seva activitat catalítica en reaccions asimmetriques d'epoxidació de substrats proquirals. Síntesi de nous lligands polipiridílics quirals amb simetria C3. Estudi de la seva química de coordinació i avaluació de la seva activitat catalítica en reaccions asimmetriques d'oxidació i reducció.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of epicatechin with bovine serum albumin (BSA) was studied by isothermal titration calorimetry. The binding constant (K) and associated thermodynamic binding parameters (n, Delta H) were determined for the interaction at three solution concentrations of BSA using a binding model assuming independent binding sites. These data show weak non-covalent binding of epicatechin to BSA. The interaction energetics varied with BSA concentration in the calorimeter cell, suggesting that the binding of epicatechin induced BSA aggregation. The free energy (Delta G) remained constant within a range of 2 kJ mol(-1) and negative entropy was observed, indicating an enthalpy driven exothermic interaction. It is concluded that the non-covalent epicatechin-BSA complex is formed by hydrogen bonding. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a kinetic double layer model coupling aerosol surface and bulk chemistry (K2-SUB) based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007). K2-SUB is applied to a popular model system of atmospheric heterogeneous chemistry: the interaction of ozone with oleic acid. We show that our modelling approach allows de-convoluting surface and bulk processes, which has been a controversial topic and remains an important challenge for the understanding and description of atmospheric aerosol transformation. In particular, we demonstrate how a detailed treatment of adsorption and reaction at the surface can be coupled to a description of bulk reaction and transport that is consistent with traditional resistor model formulations. From literature data we have derived a consistent set of kinetic parameters that characterise mass transport and chemical reaction of ozone at the surface and in the bulk of oleic acid droplets. Due to the wide range of rate coefficients reported from different experimental studies, the exact proportions between surface and bulk reaction rates remain uncertain. Nevertheless, the model results suggest an important role of chemical reaction in the bulk and an approximate upper limit of similar to 10(-11) cm(2) s(-1) for the surface reaction rate coefficient. Sensitivity studies show that the surface accommodation coefficient of the gas-phase reactant has a strong non-linear influence on both surface and bulk chemical reactions. We suggest that K2-SUB may be used to design, interpret and analyse future experiments for better discrimination between surface and bulk processes in the oleic acid-ozone system as well as in other heterogeneous reaction systems of atmospheric relevance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (carbon-carbon double bonds) can reach chemical lifetimes of many hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (< 10(-10) cm(2) s(-1)). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas–particle interactions (P¨oschl et al., 5 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface 10 concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory stud15 ies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds) can reach chemical lifetimes of 20 multiple hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (10−10 cm2 s−1). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB 25 as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristics of the boundary layer separating a turbulence region from an irrotational (or non-turbulent) flow region are investigated using rapid distortion theory (RDT). The turbulence region is approximated as homogeneous and isotropic far away from the bounding turbulent/non-turbulent (T/NT) interface, which is assumed to remain approximately flat. Inviscid effects resulting from the continuity of the normal velocity and pressure at the interface, in addition to viscous effects resulting from the continuity of the tangential velocity and shear stress, are taken into account by considering a sudden insertion of the T/NT interface, in the absence of mean shear. Profiles of the velocity variances, turbulent kinetic energy (TKE), viscous dissipation rate (epsilon), turbulence length scales, and pressure statistics are derived, showing an excellent agreement with results from direct numerical simulations (DNS). Interestingly, the normalized inviscid flow statistics at the T/NT interface do not depend on the form of the assumed TKE spectrum. Outside the turbulent region, where the flow is irrotational (except inside a thin viscous boundary layer), epsilon decays as z^{-6}, where z is the distance from the T/NT interface. The mean pressure distribution is calculated using RDT, and exhibits a decrease towards the turbulence region due to the associated velocity fluctuations, consistent with the generation of a mean entrainment velocity. The vorticity variance and epsilon display large maxima at the T/NT interface due to the inviscid discontinuities of the tangential velocity variances existing there, and these maxima are quantitatively related to the thickness delta of the viscous boundary layer (VBL). For an equilibrium VBL, the RDT analysis suggests that delta ~ eta (where eta is the Kolmogorov microscale), which is consistent with the scaling law identified in a very recent DNS study for shear-free T/NT interfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of the tensor terms in the Skyrme interaction is studied for their effect in dynamic calculations where non-zero contributions to the mean-field may arise, even when the starting nucleus, or nuclei are even-even and have no active time-odd potentials in the ground state. We study collisions in the test-bed 16O-16O system, and give a qualitative analysis of the behaviour of the time-odd tensor-kinetic density, which only appears in the mean field Hamiltonian in the presence of the tensor force. We find an axial excitation of this density is induced by a collision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the basic hydrodynamics that determines the density structure of the disks around hot stars. Observational evidence supports the idea that these disks are Keplerian (rotationally supported) gaseous disks. A popular scenario in the literature, which naturally leads to the formation of Keplerian disks, is the viscous decretion model. According to this scenario, the disks are hydrostatically supported in the vertical direction, while the radial structure is governed by the viscous transport. This suggests that the temperature is one primary factor that governs the disk density structure. In a previous study we demonstrated, using three-dimensional non-LTE Monte Carlo simulations, that viscous Keplerian disks can be highly nonisothermal. In this paper we build on our previous work and solve the full problem of the steady state nonisothermal viscous diffusion and vertical hydrostatic equilibrium. We find that the self-consistent solution departs significantly from the analytic isothermal density, with potentially large effects on the emergent spectrum. This implies that nonisothermal disk models must be used for a detailed modeling of Be star disks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Letter, we determine the kappa-distribution function for a gas in the presence of an external field of force described by a potential U(r). In the case of a dilute gas, we show that the kappa-power law distribution including the potential energy factor term can rigorously be deduced in the framework of kinetic theory with basis on the Vlasov equation. Such a result is significant as a preliminary to the discussion on the role of long range interactions in the Kaniadakis thermostatistics and the underlying kinetic theory. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to develop a novel unstructured simulation approach for injection molding processes described by the Hele-Shaw model. Design/methodology/approach - The scheme involves dual dynamic meshes with active and inactive cells determined from an initial background pointset. The quasi-static pressure solution in each timestep for this evolving unstructured mesh system is approximated using a control volume finite element method formulation coupled to a corresponding modified volume of fluid method. The flow is considered to be isothermal and non-Newtonian. Findings - Supporting numerical tests and performance studies for polystyrene described by Carreau, Cross, Ellis and Power-law fluid models are conducted. Results for the present method are shown to be comparable to those from other methods for both Newtonian fluid and polystyrene fluid injected in different mold geometries. Research limitations/implications - With respect to the methodology, the background pointset infers a mesh that is dynamically reconstructed here, and there are a number of efficiency issues and improvements that would be relevant to industrial applications. For instance, one can use the pointset to construct special bases and invoke a so-called ""meshless"" scheme using the basis. This would require some interesting strategies to deal with the dynamic point enrichment of the moving front that could benefit from the present front treatment strategy. There are also issues related to mass conservation and fill-time errors that might be addressed by introducing suitable projections. The general question of ""rate of convergence"" of these schemes requires analysis. Numerical results here suggest first-order accuracy and are consistent with the approximations made, but theoretical results are not available yet for these methods. Originality/value - This novel unstructured simulation approach involves dual meshes with active and inactive cells determined from an initial background pointset: local active dual patches are constructed ""on-the-fly"" for each ""active point"" to form a dynamic virtual mesh of active elements that evolves with the moving interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrostatic geodesic mode oscillations are investigated in rotating large aspect ratio tokamak plasmas with circular isothermal magnetic surfaces. The analysis is carried out within the magnetohydrodynamic model including heat flux to compensate for the non-adiabatic pressure distribution along the magnetic surfaces in plasmas with poloidal rotation. Instead of two standard geodesic modes, three geodesic continua are found. The two higher branches of the geodesic modes have a small frequency up-shift from ordinary geodesic acoustic and sonic modes due to rotation. The lower geodesic continuum is a newzonal flowmode (geodesic Doppler mode) in plasmas with mainly poloidal rotation. Limits to standard geodesic modes are found. Bifurcation of Alfven continuum by geodesic modes at the rational surfaces is also discussed. Due to that, the frequency of combined geodesic continuum extends from the poloidal rotation frequency to the ion-sound band that can have an important role in suppressing plasma turbulence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trypanosomes are flagellated protozoa responsible for serious parasitic diseases that have been classified by the World Health Organization as tropical sicknesses of major importance. One important drug target receiving considerable attention is the enzyme glyceraldehyde-3-phosphate dehydrogenase from the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (T. cruzi Glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH); EC 1.2.1.12). TcGAPDH is a key enzyme in the glycolytic pathway of T. cruzi and catalyzes the oxidative phosphorylation of D-glyceraldehyde-3-phosphate (G3P) to 1,3-bisphosphoglycerate (1,3-BPG) coupled to the reduction of oxidized nicotinamide adenine dinucleotide, (NAD(+)) to NADH, the reduced form. Herein, we describe the cloning of the T. cruzi gene for TcGAPDH into the pET-28a(+) vector, its expression as a tagged protein in Escherichia coli, purification and kinetic characterization. The His(6)-tagged TcGAPDH was purified by affinity chromatography. Enzyme activity assays for the recombinant His(6)-TcGAPDH were carried out spectrophotometrically to determine the kinetic parameters. The apparent Michaelis-Menten constant (K(M)(app)) determined for D-glyceraldehyde-3-phosphate and NAD(+) were 352 +/- 21 and 272 +/- 25 mu M, respectively, which were consistent with the values for the untagged enzyme reported in the literature. We have demonstrated by the use of Isothermal Titration Calorimetry (ITC) that this vector modification resulted in activity preserved for a higher period. We also report here the use of response surface methodology (RSM) to determine the region of optimal conditions for enzyme activity. A quadratic model was developed by RSM to describe the enzyme activity in terms of pH and temperature as independent variables. According to the RMS contour plots and variance analysis, the maximum enzyme activity was at 29.1 degrees C and pH 8.6. Above 37 degrees C, the enzyme activity starts to fall, which may be related to previous reports that the quaternary structure begins a process of disassembly. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Additions of one to two equivalents of Lewis acids that include magnesium salts to free-radical reduction reactions involving ester functionalized radicals and (1R,2S,5R)-menthyldiphenyltin hydride 4, bis((1R,2S,5R)-menthyl)phenyltin hydride 5, tris((1R,2S,5R)-menthyl)tin hydride 6, bis((1R,2S,5R)-menthyl)-[8-(N,N-dimethylamino)naphthyl]tin hydride 12, bis((1R,2S,5R)-menthyl)-[1-((S)-N,N-dimethylaminoethyl)phenyl]tin hydride 13 or 3α-dimethylstannyl-5α-cholestane 14 result in remarkable enantioselectivities. Examples include (S)-naproxen ethyl ester 16, produced in 74% yield and greater than 99% ee at −78°C from the bromide and 5 in the presence of MgBr2, and ethyl (R)-N-trifluoroacetyl-D-phenylglycinate 18, obtained in 78% yield and 99% ee under identical conditions. Kinetic and computational studies provide insight into the origins of these observations.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excess copper is effluxed from mammalian cells by the Menkes or Wilson P-type ATPases (MNK and WND, respectively). MNK and WND have six metal binding sites (MBSs) containing a CXXC motif within their N-terminal cytoplasmic region. Evidence suggests that copper is delivered to the ATPases by Atox1, one of three cytoplasmic copper chaperones. Attempts to monitor a direct Atox1-MNK interaction and to determine kinetic parameters have not been successful. Here we investigated interactions of Atox1 with wild-type and mutated pairs of the MBSs of MNK using two different methods: yeast two-hybrid analysis and real-time surface plasmon resonance (SPR). A copper-dependent interaction of Atox1 with the MBSs of MNK was observed by both approaches. Cys to Ser mutations of conserved CXXC motifs affected the binding of Atox1 underlining the essentiality of Cys residues for the copper-induced interaction. Although the yeast two-hybrid assay failed to show an interaction of Atox1 with MBS5/6, SPR analysis clearly demonstrated a copper-dependent binding with all six MBSs highlighting the power and sensitivity of SPR as compared with other, more indirect methods like the yeast two-hybrid system. Binding constants for copper-dependent chaperone-MBS interactions were determined to be 10–5-10–6 M for all the MBSs representing relatively low affinity binding events. The interaction of Atox1 with pairs of the MBSs was non-cooperative. Therefore, a functional difference of the MBSs in the MNK N terminus cannot be attributed to cooperativity effects or varying affinities of the copper chaperone Atox1 with the MBSs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a series of numerical simulations dealing with the problem of natural convection flows and associated heat transfer in an enclosure filled with a fluid-saturated porous medium. The analysis is based on the finite element technique and incorporates the Brinkman-extended Darcy model for an oval enclosure. The numerical results obtained for a modified Rayleigh number, Ra, Darcy number, Da, offset, E, and eccentricity, e, are presented and discussed. The numerical predictions for a square enclosure compared well with published data. It is found that any increase in Da or Ra results in a higher fluid velocity that is responsible for shifting the core of the flow. Moreover, at higher ovality (E = 0.5), asymmetric flow is observed even at the lower range of Rayleigh number (Ra ⩽ 20), which may be attributed to the effect of curved isothermal wall.